期刊文献+

基于突发词共现的微博突发话题检测 被引量:1

Micro-blog Burst Topics Detection Based on Co-occurrence of Burst Words
下载PDF
导出
摘要 微博突发话题检测是当前网络舆情的重要研究领域,从海量的微博数据中快速准确的检测出突发话题是个亟待解决的问题。针对微博特征词提取不全问题,提出基于突发词共现的微博突发话题检测方法。首先根据文档和词语频次抽取候选突发词;然后根据微博影响力、文本信息及词权重增长率抽取突发词;最后,通过突发词共现法完成突发话题检测。实验结果表明突发词共现法提高了微博突发话题检测的查准率、查全率及F值。 The detection of burst topics in Micro-blog has become of great importance in current network public opinion.It is an urgent problem to detect burst topics quickly and accurately from massive Micro-blog data.Aiming at the problem of incomplete extraction of feature words in Micro-blog,a novel Micro-blog topic detection method is proposed based on co-occurrence of burst words.Firstly,the candidate burst words are extracted according to the frequency of documents and words.Then,according to the influence of Micro-blog,text information and the growth rate of word weight,burst words are extracted.Finally,the burst topic detection is completed by the co-occurrence method of burst words.The experimental results show that the burst word co-occurrence method improves the precision,recall and F value of Micro-blog burst topic detection.
作者 魏景璇 WEI Jing-xuan(Modern Educational Technology Center,Binzhou Polytechnic,Binzhou 256603,China)
出处 《滨州学院学报》 2020年第4期74-79,共6页 Journal of Binzhou University
基金 山东省自然科学基金资助项目(ZR2014FL010)。
关键词 突发话题 突发词共现 候选突发词 突发词 burst topics co-occurrence of burst words candidate burst words burst words
  • 相关文献

参考文献8

二级参考文献95

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2郭平,康艳荣,史晓晨.基于最大Code码的极大完全子图算法[J].计算机科学,2006,33(2):188-190. 被引量:6
  • 3俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 4Kwak H, Lee C, Park H, et al. What is Twitter, a Social Net- work or a News Media? I-A]//WWW' 10 Proceedings of the 19th International Conference on World Wide Web, 2010[C]. Raleigh, North Carolina, USA : ACM, 2010 : 591 -600.
  • 5Liu Zi-tao, Yu Wen-chao, Chen Wei, et al. Short Text Feature Selection for Miero-blog Mining [A]//Computational Intelli- gence and Software Engineering, 2010[C]. Wuhan, China: Wu- han University, 2010: 1-4.
  • 6Pak A,Paxoubek Pa Twitter as a Corpus for Sentiment Analy- sis and Opinion Mining[A]//Proceedings of LREC, 2010[C]. Valletta, Malta: European Language Resources Association (ELRA). 2010:1320-1326.
  • 7Allan J,Carbonell JG, et al. Topic Detection and Tracking Pilot Study Final Report[A]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, 1998 [C]. 1998:194-218.
  • 8Sakaki Ti, Okazaki M, Matsuo Y. Earthquake Shakes Twittt User..Real-time Event Detection by Social Sensors [ A] // Pr1 ceedings of the 19th International Conference on World Wi1 Web, 2010[C]. Raleigh, North Carolina: ACM Press, 2010: 85] 861.
  • 9Petrovi S, Osborne M, Lavrenko V. Streaming First Story De- tection with application to Twitter[A]//Proceedings of HLT- NAACL, 2010 [C]. Stroudsburg, PA, USA: Association for Computational Linguisties. 2010:181-189.
  • 10Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexieal analyzer ICTCLAS [A]//. Proceedings of the second SIGHAN workshop on Chinese language processing-Volume 17, 2003 [C]. Sapporo, Japan: Association for Computational Linguistics, 2003 : 184-187.

共引文献161

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部