期刊文献+

改进的Haar子带变换双滤波器自适应算法 被引量:2

An Improved Partial Haar Dual Filter Adaptive Algorithm
下载PDF
导出
摘要 为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。 An improved partial Haar transform(PHT)algorithm is proposed in this paper to improve the convergence of the first filter W1(k)in the dual filter structure(DFS).In the new algorithm,the W1(k)adapts using a PHT version of the input signal to decrease its length.The convergence of W1(k)is further improved by optimizing the step size to minimize the a posteriori error.Finally,the normalized factor of the algorithm is calculated and maintained piecewisely to save computation.By increasing the convergence of the W1(k),the proposed algorithm requires less adaptations to achieve a delay estimation of the adaptive system,and the overall convergence of the DFS is eventually improved with the proposed algorithm.The simulation results in the context of echo cancellation indicate that compared with other traditional adaptive algorithms,the proposed algorithm is found to be more efficient in sparse system identification.
作者 文昊翔 洪远泉 罗欢 WEN Haoxiang;HONG Yuanquan;LUO Huan(College of Intelligent Engineering,Shaoguan University,Shaoguan,512000,China)
出处 《数据采集与处理》 CSCD 北大核心 2020年第6期1174-1181,共8页 Journal of Data Acquisition and Processing
基金 广东省教育厅青年创新人才基金(2016KQNCX156)资助项目。
关键词 稀疏系统辨识 双滤波器结构 自适应算法 HAAR变换 延时估计 sparse system identification dual filter structure adaptive algorithm Haar transform delay estimate
  • 相关文献

参考文献5

二级参考文献57

  • 1张艳凤,张兴福,张振川,徐晓莹.基于DSP的回声抵消器的研究与设计[J].仪器仪表学报,2006,27(z1):867-869. 被引量:4
  • 2许和勇,叶正寅,王刚,史爱明.基于非结构嵌套网格的旋翼前飞流场计算[J].西北工业大学学报,2006,24(6):763-767. 被引量:19
  • 3Digital Network Echo Cancellers, ITU-T Recommendation G. 168, 2009.
  • 4何培宇.面向实时处理的自适应声学语音信号处理.成都:四川大学,2005.
  • 5Benesty J, Gansler T, Morgan D R, et al. Advances in network and acoustic echo cancellation . New York : Springer-Verlag, 2001.
  • 6Paleologu C, Benesty J, Ciochina S. A Variable step - size affine projection algorithm designed for acoustic echo cancellation . IEEE Transactions on Audio, Speech and Language Processing, 2008; 16 (8) : 1466-1478.
  • 7Duttweiler D L. Proportionate normalized least mean squares adapta- tion in echo cancelers. IEEE Transactions on Speech and Audio Pro- cessing, 2000; 8(5): 508-518.
  • 8Hongyang D, Doroslovaeki M. Proportionate adaptive algorithms for network echo cancellation. IEEE Transactions on Siotal Processing, 2006;54(5) : 1794-1803.
  • 9Duttweiler D L. Subsampling to estimate delay with application to echo cancelling. IEEE Transactions on Acoustic Speech and Signal Processing, 1983 ; 31 (5) : 1090-1099.
  • 10Malik S, Enzner G. State - space frequency - domain adaptive filte- ring for nonlinear acoustic echocancellation. IEEE Transactions on Audio, Speech and Languate Processing, 2012; 20 (7): 2065 -2079.

共引文献12

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部