期刊文献+

二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述 被引量:5

Review on modeling and parameter selection for chemical reactions of mineral dissolution and precipitation under the condition of CO2 sequestration in saline aquifers
下载PDF
导出
摘要 CO2地质封存是世界范围内减少CO2排放量,缓解温室效应的重要手段。深部咸水层分布广泛且CO2封存潜力大,是最具潜力的CO2封存场所。因开展CO2地质封存条件下CO2与储层岩石相互作用的试验成本高昂且持续时间短,数值模拟成为研究CO2长期封存过程CO2储层岩石物理和化学性质演化的重要手段。CO2和储层岩石化学反应的数值模型主要模拟饱含CO2咸水溶液与储层岩石中含有的矿物发生反应,导致矿物溶解和沉淀的过程,而矿物的溶解和沉淀会影响储层岩石孔隙率和渗透率。数值模拟建模过程中矿物热力学和动力学参数的取值差异,导致矿物溶解和沉淀速率的差异,加大了地球化学模拟结果的不确定性。对重要矿物的地球化学反应相关参数(平衡常数、反应速率常数、比表面积)进行了全面总结,指出了相关参数的不确定性是限制数值模拟准确性的决定因素。 CO2 geological sequestration is an important measure to decrease CO2 emissions and mitigate the greenhouse effect worldwide.Deep saline aquifers are widely distributed with a large CO2 sequestration capacity,and are regarded as ideal CO2 sequestration sites.Due to the high cost and short duration of the experiments to study the interaction between CO2 and reservoir rocks under the condition of CO2 geological sequestration,numerical simulation becomes an important method to study the evolutions of the physical and chemical properties of the rock in a CO2 reservoir during long-term sequestration of CO2.The process of mineral dissolution and precipitation caused by the reaction between the CO2-saturated brine and the minerals in the reservoir rock is mainly simulated by the numerical reactive transport model,and the porosity and permeability of the rock in the reservoir are affected by mineral dissolution and precipitation.The variations of the thermodynamic and kinetic parameters of the minerals selected during the modeling process leads to variations of the predicted mineral dissolution and precipitation rates,and thus cause the large uncertainties of the results from geochemical simulation.Moreover,the parameters(equilibrium constant,reaction rate constant,and specific surface area)related to the geochemical reactions of the important minerals are comprehensively summarized,revealing that the uncertainties of the related parameters are the dominating factors to limit the accuracy of the simulation.
作者 刘思楠 张力为 苏学斌 王燕 赵立信 甘满光 付晓娟 李小春 LIU Sinan;ZHANG Liwei;SU Xuebin;WANG Yan;ZHAO Lixin;GAN Manguang;FU Xiaojuan;LI Xiaochun(State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China;University of Chinese Academy of Sciences, Beijing 100049, China;China National Uranium Co., Ltd., Beijing 100013, China;Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101149, China)
出处 《水利水电技术》 北大核心 2020年第11期13-22,共10页 Water Resources and Hydropower Engineering
基金 国家自然科学基金项目(41902258,U1967208) 中国科学院-工研院两岸合作计划项目(CAS-ITRI2019011)。
关键词 二氧化碳地质封存 矿物溶解和沉淀 平衡常数 速率常数 比表面积 不确定性分析 气候变化 人类活动 CO2 geological sequestration mineral dissolution and precipitation equilibrium constant rate constant specific surface area uncertainty analysis climate change human activities
  • 相关文献

参考文献4

二级参考文献79

  • 1徐衍彬,陈平,徐永成.海拉尔盆地碳钠铝石分布与油气的关系[J].石油与天然气地质,1994,15(4):322-327. 被引量:47
  • 2Thanh N. Troung. Reaction Class Transition State Theory: Hydrogen Abstraction Reactions by Hydrogen Atoms as Test Cases, Journal of Chemical Physics, 2000, 113(12): 4957-4964.
  • 3Thanh N. Troung, Dilip K. Maity and Thanh-Thai N. Troung. A Combined Reaction Class Approach with Integrated Molecular Orbital + Molecular Orbital Methodology: A Practical Tool for Kinetic Modeling[J]. Journal of Chemical Physics, 2000,112(1):24-30.
  • 4高玉巧,刘立,曲希玉.CO_2与砂岩相互作用机理与形成的自生矿物组合[J].新疆石油地质,2007,28(5):579-584. 被引量:9
  • 5IPCC. Climate Change 2007: Synthesis Report [M]. Geneva, Switzerland: IPCC, 2007.
  • 6Carbon Dioxide Capture and Storage [M]. UK: Cambridge University Press, 2005.
  • 7Ennis-King J, Preston I, Paterson L Role of convective mixing in the long-term storage of Carbon dioxide in deep saline formations [J]. SPE Journal, 2005, 10(3): 349-356.
  • 8Lindeberg E, Bergmo P. The long-term fate of CO2 injected into an aquifer [A]. //Gale J J, Kaya Y, eds. Proceedings of the 6th international conference on greenhouse gas control technologies, voL I [C]. Amsterdam: Pergamon, 2003: 489- 494.
  • 9:u T F, Apps J A, Pruess K. Numerical simulation of COz isposal by mineral trapping in deep aquifers [J]. Applied eochemistry, 2004, 19(6): 917-936.
  • 10Bachu S. OD2 storage in geological media: Role, means, status and barriers to deployment [J]. Progress in Energy and Combustion Science, 2008, 34(2).- 254-273.

共引文献80

同被引文献105

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部