期刊文献+

基于变分模态分解和奇异值分解的频率相近信号分离方法 被引量:6

Similar Frequency Signal Separation Based on VMD and Singular Value Decomposition
下载PDF
导出
摘要 频率相近信号分离是故障诊断的难点问题。变分模态分解(VMD)作为一种新的信号时频分析方法,对频率相近信号具有较高的分辨率,能够实现频率相近信号的分离。VMD分解时先指定分解层数,层数选取的优劣将直接影响分解效果,过分解时容易产生虚假频率成分,反之,欠分解则容易丢失有用频率成分。基于此,提出一种基于变分模态分解和奇异值分解相结合的相近频率信号分离方法。首先选择适当的分解层数对信号进行VMD过分解,然后对分解得到的分量进行奇异值分解,通过奇异值分解检测并剔除虚假信号成分,从而实现频率相近信号的有效分离。利用仿真信号和滚动轴承故障信号证明了该方法的有效性和可行性。 Similar frequency signal separation is a difficult problem in fault diagnosis.As a new method of signal time frequency analysis,variational mode decomposition(VMD)has a higher resolution for signals with similar frequency.The number of decomposition levels,which can directly affect the decomposability,is first specified in VMD.Once overdecompose is likely to produce false frequency components,while under-decompose is easy to lose useful frequency components.Thus,a new method of similar frequency signal separation based on VMD and signal singular value decomposition is proposed.Firstly,appropriate decomposition levels is selected to over-decompose the signal,and then singular value decomposition is carried out on the components obtained by VMD,which can detect and eliminate false signal components,so as to separate similar frequency signal well.The effectiveness and feasibility of the proposed method are demonstrated by simulation signal and rolling bearing fault signal.
作者 邢婷婷 关阳 刘子涵 樊凤杰 孟宗 XING Ting-ting;Guan Yang;LIU Zi-han;FAN Feng-jie;MENG Zong(Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University,Qinhuangdao,Hebei 066004,China;Tangshan Polytechnic College,Tangshan,Hebei 063000,China)
出处 《计量学报》 CSCD 北大核心 2020年第11期1404-1409,共6页 Acta Metrologica Sinica
基金 国家自然科学基金(51575472,61873226,61873227) 河北省自然科学基金(E2019203448)。
关键词 计量学 故障诊断 旋转机械 变分模态分解 奇异值分解 频率相近信号分离 metrology fault diagnosis rotating machinery variational mode decomposition(VMD) singular value decomposition similar frequency signal separation
  • 相关文献

参考文献12

二级参考文献114

共引文献906

同被引文献71

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部