摘要
液-液萃取过程中,极限有机相浓度(LOC)是表征稀释剂性能的关键指标之一,但稀释剂分子结构与LOC之间的关系及影响机制尚不明确。针对TBP-Zr(NO3)4-HNO3体系,研究了烷烃稀释剂结构、碳链分布和取代情况对LOC的影响。结果表明:烷烃主链碳数对LOC影响较大,主链碳数越小,LOC越大;取代基性质(种类、数量和位置)也有重要影响,稀释剂总碳数一定时,取代基越多、取代基所处位置越靠近分子链内部且分布在一侧时越有利于LOC提高;利用反胶束聚集模型解释了不同分子结构烷烃的结构效应,低碳组分含量越高、二取代和多取代烷烃占比越大,LOC越高。了解烷烃稀释剂与LOC之间的构效关系有利于设计及制备新型稀释剂。
During liquid-liquid extraction,the limiting organic concentration(LOC)is the one of the most important indicators of diluent,however,the intrinsic connection and influencing mechanism between the diluent molecular structure and LOC is still unclear.Using TBP-Zr(NO3)4-HNO3 as a model extraction system,the effects of structure,carbon chain distribution and substitution alkane diluents on their LOC were examined.The results show that the alkane diluent LOC increases with carbon number of alkanes main chain.Besides,the substituent group of alkane diluent is another important factor,the more substituent groups is,the higher LOC is if the total carbon number is fixed.Interestingly,the LOC varies with the substituents position,LOC is the higher when the substituents position locating at the inner one end of alkane.The reverse micelle model is used to interpret the molecular structure effect of the alkanes diluents.Additionally,the LOC of mixed diluent with different carbon number distribution and substitution is higher under the conditions of higher low carbon component content,higher proportion of di-and multi-substitution.Understanding the structure-activity relationship between alkane diluents and LOC is beneficial to the design and synthesis of new diluents.
作者
王文涛
曹智
张春龙
谢书宝
袁洁琼
苏哲
WANG Wentao;CAO Zhi;ZHANG Chunlong;XIE Shubao;YUAN Jieqiong;SU Zhe(Institute of Radiochemistry,Chinese Academy of Atomic Energy,Beijing 102413,China;Nuclear and Radiation Safety Center of Ministry of Ecological Environment,Beijing 102488,China)
出处
《湿法冶金》
CAS
北大核心
2020年第6期517-523,共7页
Hydrometallurgy of China
基金
国家自然科学基金资助项目(21601207)。
关键词
稀释剂
极限有机相浓度(LOC)
分子结构
反胶束
机理
diluent
limiting organic concentration(LOC)
molecular structure
reverse micelle
mechanism