期刊文献+

基于多层神经网络的机电伺服系统积分鲁棒控制 被引量:6

Integral Robust Control of Mechatronic Servo Systems Based on Multilayer Neural Network
下载PDF
导出
摘要 针对含有模型不确定性的机电伺服系统,设计一种基于多层神经网络干扰补偿的控制策略。通过多层神经网络对与状态有关的干扰进行在线估计,以提高基于模型前馈控制输入的补偿精度,然后结合误差符号积分鲁棒(RISE)反馈控制方法,通过RISE的鲁棒增益处理神经网络逼近误差与未估计干扰,从而抑制干扰对伺服性能的不利影响。基于Lya⁃punov稳定性理论,证明了所提出控制器的闭环系统半全局渐近稳定,且系统所有信号有界。仿真结果表明:所提出的控制策略具有很好的干扰抑制能力,可显著提高机电伺服系统的跟踪精度。 Aimed at mechatronic servo systems with model uncertainty,a control strategy based on multilayer neural network in⁃terference compensation was designed.Multi⁃layer neural network was used to estimate state⁃related disturbances online to improve the compensation accuracy based on the model feedforward control input.Then combined with the robust integral of the sign of the error(RISE)feedback control method,the neural network approximation error and unestimated interference were processed by the robust gain of RISE so as to suppress the adverse effect of interference on servo performance.Based on Lyapunov stability theory,it was proved that the closed⁃loop system of the proposed controller is semi⁃globally asymptotically stable,and all signals of the system were bounded.The simulation results show that the proposed control strategy has good interference suppression ability and the tracking accu⁃racy of the mechatronic servo system can be significantly improved.
作者 吉珊珊 陈传波 JI Shanshan;CHEN Chuanbo(Department of Computer Engineering,Dongguan Polytechnic,Dongguan Guangdong 523808,China;School of Software Engineering,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
出处 《机床与液压》 北大核心 2020年第23期142-146,共5页 Machine Tool & Hydraulics
基金 2017广东省教育厅青年创新人才类项目(2017GkQNCX119) 东莞市社会科技发展项目(2017507156388)。
关键词 机电伺服系统 建模不确定性 鲁棒控制 多层神经网络 Mechatronic servo system Modeling uncertainty Robust control Multi⁃layer neural network
  • 相关文献

参考文献3

二级参考文献20

  • 1李航,孙厚芳,韩建海,李济顺,赵书尚,林青松.两轮机器人行走机构的建模与实验[J].北京理工大学学报,2004,24(12):1058-1061. 被引量:10
  • 2高道祥,薛定宇.基于MATLAB/Simulink机器人鲁棒自适应控制系统仿真研究[J].系统仿真学报,2006,18(7):2022-2025. 被引量:20
  • 3The Mathworks Inc,. SimMechanics for use with Simulink user's guide [K]. Version2, U.S: The Mathworks Inc, 2002.
  • 4Edward B Magrab.MATLAB原理与工程应用[M].北京:电子工业出版社,2002..
  • 5Tao J,Sadler J P.Constant speed control of a motor driven mechanism system[J].Mech Mach Theory (S0094-114X),1995,30(5):737-48
  • 6Zhang W J,Chen X B.Mechatronics design for a programmable closed-loop mechanism[C]// Proc Inst Mech Eng.London:Professional Engineering Publishing.2001.
  • 7YANG J, SU J, LI S, etal. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach [J]. IEEE Transactions on Industrial Informatics, 2014, 10 (1) : 604-614.
  • 8CHEN Z, YAO B, WANG Q. Adaptive robust pre- cision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes [J]. IEEE Transactions on Industrial Informat- ics, 2013, 9(2): 965-973.
  • 9HASHEMI M, ASKARI J, GHAISARI J, et al. Adaptive compensation for actuator failure in a class of nonlinear time-delay systems[J]. IET Control The- ory Application, 2015,62(5): 2891-2902.
  • 10ZHAO B, XIAN B, ZHANG Y, etal. Nonlinear ro- bust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology [J]. IEEE Transactions on Industrial Electronics, 2015,62 ( 5 ) : 2891-2902.

共引文献23

同被引文献63

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部