期刊文献+

大豆根中GmPME7基因防御氧化铜纳米颗粒的功能验证

Functional Identification of GmPME7 Gene Responding to Copper Oxide Nanoparticles in Soybean Roots
下载PDF
导出
摘要 通过构建pCAMBIA3301-GmPME7载体,在大豆毛状根中超表达GmPME7基因,验证了该基因的功能。结果表明:氧化铜纳米颗粒(CuO NPs)处理后,与转入空载体的毛状根相比,转基因毛状根中的果胶甲酯酶(PME)活性逐渐增加,果胶甲酯化程度逐渐降低,2 mg/L CuO NPs处理48 h后的转基因毛状根中PME活性和果胶甲酯化程度分别为对照的1.23倍和0.69倍,说明GmPME7基因的功能可能是通过调控PME活性增加从而降低果胶甲酯化程度,来抵抗CuO NPs的胁迫。 Through the constructed pCAMBIA3301-GmPME7 vector,the GmPME7 gene was overexpressed in soybean hairy roots,and the function of GmPME7 gene was verified.Compared with the control of hairy roots with empty vector of the pCAMBIA3301,the PME activity gradually increased and the degree of pectin methylation gradually decreased in overexpressing roots under copper oxide nanoparticles(CuO NPs)suspensions treatment.After treatment with 2 mg/L CuO NPs suspension for 48 h,the PME activity and the degree of pectin methylation in overexpressor lines were 1.23 and 0.69 times,compared to control group.It illustrated that the GmPME7 gene probably resisted the stress of CuO NPs through regulating the PME activity and the degree of pectin methylation in soybean root.
作者 逄淑钧 刘猜 于延冲 辛华 PANG Shujun;LIU Cai;YU Yanchong;XIN Hua(College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China)
出处 《青岛农业大学学报(自然科学版)》 2020年第4期271-276,共6页 Journal of Qingdao Agricultural University(Natural Science)
基金 山东省自然科学基金(ZR2017MB046) 青岛农业大学高层次人才科研基金(663/1110314)。
关键词 氧化铜纳米颗粒 大豆 PME 果胶甲酯化程度 GmPME7 CuO nanoparticles soybean root PME degree of pectin methylation PME7
  • 相关文献

参考文献3

二级参考文献18

  • 1彭红云,杨肖娥,田生科.Accumulation and ultrastructural distribution of copper in Elsholtzia splendens[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(5):311-318. 被引量:10
  • 2Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glaze- brook J (2014). Arabidopsis pectin methylesterases contibute to immunity against Pseudomonas syringe. Plant Physiol, 164 (2): 1093~ 1107.
  • 3Bosch M, Hepler PK (2005). Pectin methylesterases and pectin dy- namics in pollen tubes. Plant Cell, 17 (12): 3219-3226.
  • 4CaffaU KH, Mohnen D (2009). The structure, function, and biosynthe- sis of plant cell wall pectic polysaccharides. Carbohydr Res, 344 (14): 1879~1900.
  • 5Ezaki N, Kido N, Takahashi K (2005). The role of wall Ca~+ in the regulation of wall extensibility during the acid-induced exten- sion of soybean hypocotyl cell walls. Plant Cell Physiol, 46 (11): 1831~1838.
  • 6Micheli F (2007). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci, 6 (9): 414-419.
  • 7Moustacas AM, Nail J, Borel M (1991). Pectin methylesterase, met- al ions and plant cell-wall extension. Biochem J, 279 (Pt 2): 351~354.
  • 8Novosel'skaya IL, Voropaeva NL, Semenova LN, Rashidova SS (2000).Trends in the science and applications of pectins. Chem Nat Compd, 36 (1): 1~10.
  • 9Pelloux J, Rusterucci C, MeUerowicz EJ (2007). New insights into pectin methylesterase structure and function. Trends Plant Sci, 12 (6): 267~277.
  • 10Senechal F, Graft L, Surcouf O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Hofte H et al (2014). Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and pro- cessed by SBT3.5, a subtilisin-like serine protease. Ann Bot, 144 (6): 1161-1175.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部