期刊文献+

含双记忆和时滞项的非线性粘弹性对数波动方程解的爆破

On Blow-up of Solutions for a Class Logarithmic Nonlinear Wave Equation with Double Memory and Delay Terms
下载PDF
导出
摘要 考虑一类含双记忆和时滞项的非线性粘弹性对数波动方程解的爆破性.在一定假设条件下,利用凸性方法证明了当初始能量函数E(0)<0时,方程的能量解在有限时刻爆破. In this paper,blow-up of solutions have been concerned for a class logarithmic nonlinear wave equation with double memory and delay terms.Under certain assumptions,the convexity method has been used to prove that when the initial energy function E(0)<0,the energy solution of the equation blow-up at finite time.
作者 高云龙 林荣瑞 佘连兵 GAO Yun-long;LIN Rong-rui;SHE Lian-bing(School of Mathematics and Computer Science,Liupanshui Normal University,Liupanshui Guizhou 553004,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第12期20-27,共8页 Journal of Southwest China Normal University(Natural Science Edition)
基金 贵州省教育厅自然科学基金项目(KY[2019]139,KY[2019]143) 贵州省科学技术基金项目([2020]1Y007) 六盘水师范学院校级项目(LPSSYKJTD201907).
关键词 双记忆项 时滞项 非线性对数项 爆破 double memory terms delay term nonlinear logarithmic term blow-up
  • 相关文献

参考文献8

二级参考文献23

  • 1谢元喜.Burgers方程的直接解法[J].华东师范大学学报(自然科学版),2007(3):89-92. 被引量:9
  • 2[1]Peyrard M,Bisshop A R.Statistical Mechanics of a Nonlinear Model for DNA Denaturation[J].Physics Review Letter,1989,62:2755-2758.
  • 3[2]Muto V,Lomdahl P S,Christiansen P L.A Two-Dimensional Discrete Model for DNA Dynamics:Longitudinal Wave Propagation and Denaturation[J].Phyics Review A,Statics Physics Plasmas Fluids Related Interdiscipline Topics,1990,42:7452-7458.
  • 4[3]Christiansen P L,Lomdahl P S,Muto V.On a Toda Lattice Model with a Transversal Degree of Freedom[J].Nonlinearity,1990,4:477-501.
  • 5[4]Ladyzhenskaya O A.Attractors for Semigroups and Evolution Equations[M].London:Cambridge Univ Press,1991.
  • 6[5]Stein E M.Singular Integral and Differentiability properties of Functions[M].Princeton:Princeton University Press,1970.
  • 7[6]Levine H A.Some Additional Remarks on the Nonexistence of Global Solution to Nonlinear Wave Equations[J].SIAM J Math Anal,1974,5:138-146.
  • 8[7]Constantin A,Molinet L.The Initial Value Problem for a Generalized Boussinesq Equation[J].Diff Int Eqns,2002,15:1061-1072.
  • 9[8]Wang Shu-bin,Chen Guo-wang.Small Amplitude Solutions of the Generalized IMBq Equation[J].J Math Anal Appl,2002,274:846-866.
  • 10[9]Wang Shu-bin,Chen Guo-wang.Cauchy Problem for the Nonlinear schrdinger-IMBq Equations[J].Discrets and Continuous Dynamical Systems,2006,B(6)(1):203-214.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部