摘要
运用Schauder不动点定理研究了一类格林函数变号的非线性二阶Neumann问题u″+m^2u=λg(t)f(u)t∈[0,1]u′(0)=u′(1)=0正解的存在性,其中λ是一个正参数,m∈π/2,π/2+ε,ε>0充分小,g:[0,1]R+为连续函数,f:[0,∞)R为连续函数且f(0)>0.
In this paper,a class of second-order nonlinear Neumann problems has been studied with sign-changing Green′s function u″+m^2u=λg(t)f(u)t∈[0,1]u′(0)=u′(1)=0 Whereλis a positive parameter,m∈π/2,π/2+εwithε>0 small,g:[0,1]R+is a continuous function,f:[0,∞]R is a continuous function and f(0)>0.by means of the Schauder fixed point theorem,We obtain the existence of positive solutions.
作者
李朝倩
LI Zhao-qian(School of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2020年第12期43-47,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11671322).