期刊文献+

时滞双向联想记忆神经网络模型的稳定性和Hopf分支 被引量:3

Stability and Hopf Bifurcation of BAM Neural Network Model with Delay
下载PDF
导出
摘要 考虑具有两个时滞的双向联想记忆神经网络模型,通过对系统在平衡点(0,0)处线性化,再对该线性系统的特征方程的根在复平面上进行分析,进而讨论模型平衡点(0,0)的稳定性与Hopf分岔,并利用Matlab软件包对相应的理论结果通过图形描述进行数值验证. A bidirectional associative memory neural network model with two delays are examined.By linearizing the system at equilibrium point(0,0),then the roots of the characteristic equation of the linear system are analyzed in the complex plane.And the stability of equilibrium point(0,0)and Hopf bifurcation of the Model are further investigated.Finally,Matlab software package is adopted to verify the corresponding theoretical results through graphic description.
作者 沈维 SHEN Wei(Department of Mathematics, Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China)
出处 《内江师范学院学报》 2020年第12期27-31,共5页 Journal of Neijiang Normal University
基金 国家自然基金项目(615630224)。
关键词 时滞 神经网络模型 稳定性 HOPF分支 delay neural network model stability Hopf bifurcation
  • 相关文献

参考文献5

二级参考文献18

  • 1魏俊杰,张春蕊,李秀玲.具时滞的二维神经网络模型的分支[J].应用数学和力学,2005,26(2):193-200. 被引量:10
  • 2刘春潮,刘焕彬,李永昆.分布时滞双向神经网络的周期解的渐近稳定性(英文)[J].生物数学学报,2005,20(2):142-148. 被引量:5
  • 3赵丹丹,王林山.变时滞区间细胞神经网络的全局鲁棒稳定性[J].生物数学学报,2006,21(4):557-563. 被引量:5
  • 4Hopfield J J. Neurons with graded response have collective computional properties like those of two-state neurons[J]. Proceedings of the National Academy of Science USA, 1984, 81(10):3088-3092.
  • 5Marcus C M, Westervelt R M. Stability of analog neural network with delay[J]. Physical Review A,1989, 39(1):347 359.
  • 6Gopalsamy K,He X. Stability in asymmetrc Hopfield networks with transission delays[J]. Physica D, 1994, 76(4):344-358.
  • 7Wei J,Ruan S. Stability and bifurcation in a neural network model with delays[J]. Physica D,1999, 130(3- 4):255--272.
  • 8P.Van Den Drissche, Zou X. Global attractivity in delayed Hopfield neural network models[J]. SIAM Journal on Applied Mathematics, 1998, 58(6):1878-1890.
  • 9Hale J K, Lunels S V. Introduction to Functional Differential Equations[M]. New York: Springer-Verlay, 1993.
  • 10Cooke K, Grossman Z. Discrete delay, delay, distrbuted delayed and stability switchs[J]. Journal of Mathematical Analysis and Applications, 1982, 86(2):592-627.

共引文献11

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部