期刊文献+

基于亮度模型融合的改进暗通道先验图像去雾算法 被引量:6

An Improved Dark Channel Prior Image Dehazing Algorithm Based on Fusion Luminance Model
原文传递
导出
摘要 针对暗通道先验在天空区域的失效问题,提出了一种基于亮度模型融合的改进暗通道先验图像去雾算法。首先通过Canny算子分割得到天空区域与非天空区域;其次,利用亮度模拟景深,重构亮度透射率,并通过与暗通道透射率的融合构成天空区域透射率,最后的透射率图经由快速引导滤波进行精细化处理;大气光值选择抗干扰能力更强的天空区域中像素强度值前0.1%的像素中值;最后,经由大气散射模型恢复出无雾图像。实验结果表明,该算法针对含雾图像能够有效地恢复出图像的细节并抑制光晕现象,明亮度适宜,颜色自然。 An improved dark channel prior image dehazing algorithm based on the fusion luminance model was proposed to deal with the failure of a dark channel prior in the sky.First,sky and non-sky areas were segmented using a Canny operator.Next,luminance transmission was constructed by simulating the depth of the scene using the luminance,which combined with the transmission of the dark channel to form the transmission of the sky area.A fast-guided filter was used to optimize the transmission map.The value of atmospheric light was selected as the median of the top 0.1%of the pixels with strong anti-interference ability.Finally,the haze-free image was restored using the atmospheric scattering model.Experimental results show that the algorithm could effectively recover the details of the image and suppress the halo phenomenon for the haze image including the sky area with appropriate brightness and natural color.
作者 李雅梅 张旭佳 谢秉旺 Yamei Li;Xujia Zhang;Bingwang Xie(Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第22期59-65,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(51974151,71771111) 辽宁省教育厅基金项目(LJ2019JL013)。
关键词 图像处理 亮度模型 融合透射率 大气散射模型 image processing luminance model fusion transmission atmospheric scattering model
  • 相关文献

参考文献6

二级参考文献33

  • 1NAYAR S K, NARASIMHAN S G. Vision in bad weather [C] Proceedings of the 7th IEEE Inter- national Conference on Computer Vision, Kerkyra , Greece: IEEE-ICCV, 1999:820-827.
  • 2TAN K, OAKLEY P J. Physics-based approach to color image enhancement in poor visibility conditions [J]. Optical Society of America, 2001, 18(10) :2460-2467.
  • 3FATTAL R. Single image dehazing[J]. ACM Trans- actions on Graphics, 2008, 27(3): 1-9.
  • 4TAREL J P. HAUTIERE N. Fast visibility resto- ration from a single color or gray level image[C]. Proceedings of the 12th IEEE International Con- ference on Computer Vision , Kyoto. Japan: IEEE- ICV, 2009 : 2201 - 2208.
  • 5HE KM,SUN J,TANG X. Single image haze re- moval using dark channel prior[C]. Proceedings of the IEEE Conference on Computer Vision and Pat- tern Recognition, Miami. USA : IEEE-CVPR , 2009: 1956-1963.
  • 6PARIS M,FREDO D. bilateral filter using a [C]. Graz, Austria: berg, D- 69121, Germany A fast signal approximation of the processingapproach Springer Verlag, Heidel ,2006 : 568- 580.
  • 7CHEN J W,PARIS S, DURAND F. Real-time edge- aware image processing with the bilateral grid[C]. Proc. of ACM, SIGGRAPH' 07.[S. 1.]: ACMPress, 2007.
  • 8NAMER E, SCHECHNER Y Y. Advanced visibil- ity improvement based on polarization filtered ima-ges[C]. Proceedings of the Polarization Science and Remote Sensing II. San Diego,USA : SPIE, 2005:36-45.
  • 9HAUTIEREN,TAREI. J P,AUBERT D,et al: Blind contrast enhancement assessment by gradient ratioing at visible edges[J], hnage Analysis and Stereology Journal, 2008,27 (2) : 87- 95.
  • 10KOHLER R. A segmentation system based on thresh- otding [J]. Computer Graphics and Image Process- ing,1981,15(4) :319-338.

共引文献108

同被引文献48

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部