摘要
Bi2MoO6是一种利用可见光辐照的n型窄禁带半导体,是一种很好的光催化剂,BiOCl是一种具有良好催化活性的铋系卤氧化物,在本探究实验中,以Bi(NO3)3·5H2O、Na2MoO4·2H2O、SnCl2为原料,通过水热法制备不同BiOCl负载量的BiOCl/Bi2MoO6.在可见光下照射污染物RhB,研究光催化降解的反应机理,并探究不同BiOCl负载量的催化剂对光催化降解的影响.其中最优负载量的BiOCl/Bi2MoO6催化剂在可见光照射80 min时,对罗丹明B的降解率达到88.1%,而纯Bi2MoO6在相同条件下降解率仅为48.7%.通过XRD、SEM、BET及循环实验,对复合物的形貌、晶体尺寸、比表面积进行研究,实验证明,BiOCl负载Bi2MoO6复合物的光催化降解活性相比于纯的Bi2MoO6有很大的提高.根据自由基捕获实验,证明空穴是主要的活性物质,由捕获实验的结果,提出BiOCl负载Bi2MoO6二元复合物可能存在的降解机理.
Bi2MoO6 is an n-type narrow bandgap semiconductor irradiated with visible light and a good photocatalyst.BiOCl is a bismuth oxyhalide with good catalytic activity.In this experiment,Bi(NO3)3·5H2O、Na2MoO4·2H2O、SnCl2 were used as raw materials,and BiOCl/Bi2MoO6 with different loading of BiOCl is prepared by hydrothermal method.The pollutant RhB was irradiated under visible light to study the reaction mechanism of photocatalytic degradation,and the effects of different BiOCl loading catalysts on photocatalytic degradation were investigated.Among them,the optimal loading of BiOCl/Bi2MoO6 catalyst showed the degradation rate of rhodamine B was 88.1%when visible light was irradiated for 80 min,while the degradation rate of pure Bi2MoO6 under the same conditions was only 48.7%.Through XRD,SEM,BET and cycling experiments,the morphology,crystal size and specific surface area of the composite were studied.The experiment proved that the photocatalytic degradation activity of BiOCl-loaded Bi2MoO6 composite was greatly improved compared to pure Bi2MoO6.According to the free radical trapping experiment,it is proved that the hole is the main active substance.From the result of the trapping experiment,the conjecture degradating mechanism of BiOCl-loaded Bi2MoO6 binary complex is proposed.
作者
胡豪
单明清
黄李璐
邹晨涛
杨水金
HU Hao;SHAN Mingqing;HUANG Lilu;ZOU Chentao;YANG Shuijin(College of Chemistry and Chemical Engineering, Hubei Key Laboratory of PollutantAnalysis & Reuse Technology, Hubei Normal University, Huangshi 435002, China)
出处
《湖北大学学报(自然科学版)》
CAS
2021年第1期67-73,共7页
Journal of Hubei University:Natural Science
基金
湖北省自然科学基金重点项目(2014CFA131)
2020年国家大学生创新训练计划项目(202010513004)资助。