期刊文献+

基于改进YOLOv3算法的行人检测研究 被引量:7

Pedestrian Detection Based on Improved YOLOv3 Algorithm
下载PDF
导出
摘要 YOLOv3算法在单一物体目标检测时使用Darknet53作为主干,网络出现冗余现象,导致参数过多,检测速度变慢,传统的边界框损失函数影响检测定位准确性。针对这一问题,文中提出了改进YOLOv3算法的行人检测方法。通过构造以Darknet19为主干网络多尺度融合的新型网络,加快训练速度和检测速度,还通过引入广义交并比损失函数来提高检测精确度。实验结果表明,在行人检测数据集如INRIA行人数据集中,相比于原始算法,文中所提算法的精确度提高了5%。和Faster R-CNN相比,在保证准确率的情况下,采用文中算法使单张图片的检测速度达到了每张0.015 s。 The YOLOv3 algorithm uses Darknet53 as the backbone in the target detection(pedestrian detection)of a single object,and the network appears redundant,which results in too many parameters and slow detection speed.Additionally,the traditional bounding box loss function makes the detection and positioning inaccurate.To solve these problems,the improved YOLOv3 backbone network is proposed in the current study.A new multi-scale fusion network based on Darknet19 is constructed to accelerate the training speed and detection speed,and a generalized intersection over union loss function is introduced to improve the detection accuracy.The experimental results show that the proposed algorithm improves the accuracy of the original algorithm by 5%in the pedestrian detection dataset such as the INRIA pedestrian dataset.Compared with Faster R-CNN,the detection speed of a single image reaches 0.015 s per image under the condition of good accuracy.
作者 叶飞 刘子龙 YE Fei;LIU Zilong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2021年第1期5-9,30,共6页 Electronic Science and Technology
基金 国家自然科学基金(61603255)。
关键词 目标检测 广义交并比 YOLOv3 多尺度融合 行人检测 INRIA数据集 target detection generalized intersection over union YOLOv3 multi-scale fusion pedestrian detection INRIA data set
  • 相关文献

参考文献7

二级参考文献34

  • 1李臻,魏志强,纪筱鹏,殷波,聂婕,倪欣.基于自适应背景模型的行人检测方法[J].系统仿真学报,2009,21(S1):61-64. 被引量:7
  • 2Felzenszwalb P F,Girshick R B, McAllester D,et al. Objectdetection with discriminatively trained part -based models [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2010,32 ( 9 ) : 1627 - 1645.
  • 3Dollar P,Wojek C,Schiele B,et al. Pedestrian detection: An evaluation of the state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34 (4) : 743 - 761.
  • 4Dalai N ,Triggs B. Histograms of oriented gradients fnr human detection [ C ]. IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition,2005.
  • 5Lowe D G. Distinctive image features from scale - invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 6Viola P,Jones M J,Snow D. Detecting pedestrians using pat- terns of motion and appearance [ J ]. International Journal of Computer Vision,2005,63(2) :153 -161.
  • 7Ren X, Ramanan D. Histograms of sparse codes for object de- tection[ C]. Penna:2013 IEEE Conference on Computer Vi- sion and Pattern Recognition (CVPR) ,2013.
  • 8NVIDIA. GPUs - the engine of deep learning [ EB/OL]. (2009 - 12 - 23) [ 2015 - 11 - 11 ]. https:// developer, nvidia, com/deep - learning.
  • 9Tang S, Andriluka M, Schiele B. Detection and tracking of occluded people [ J ]. International Journal of Computer Vi- sion,2014,110( 1 ) :58 -69.
  • 10Hsiao E,Hebert M. Occlusion reasoning for object detection- under arbitrary viewpoint [ J ]. IEEE Transactions on Pattern An',flysis and Machine Intelligence, 2014, 36 (9) : 1803 - 1815.

共引文献35

同被引文献35

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部