摘要
通过真空感应熔炼及高能球磨制备了Ti1.06Pr0.04Fe0.6Ni0.3Zr0.1Mn0.2储氢合金,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、蓝电电池测试等手段研究了球磨时间对合金的相组成、组织结构及电化学性能的影响。XRD结果表明:铸态合金主相为TiFe,及少量ZrMn2第二相。球磨后合金出现非晶化,合金的晶格常数和晶胞体积随着球磨时间的增长而减小。SEM观察合金表面形貌发现:随着球磨时间的加长,颗粒逐渐变细小。电化学性能测试表明:球磨可显著改善合金的活化性能,同时球磨后合金的电化学容量显著提高,均高于铸态合金的52.8 mA·h/g的放电容量,且球磨5 h后的电化学放电容量最大,为170.7 mA·h/g。P-C-T曲线测试结果表明,随着球磨时间的延长,合金的平台压逐渐升高,且吸放氢滞后性明显。
A Ti1.06Pr0.04Fe0.6Ni0.3Zr0.1Mn0.2 alloy was prepared by vacuum induction and high energy ball milling,and the effect of ball milling time on the phase composition,microstructure,and electrochemical properties was studied by X-ray diffraction(XRD),scanning electron microscope(SEM),and in a LAND battery test system.The studies indicated that the main phase in the as-cast alloy was TiFe and the secondary phase was ZrMn2.Ball milling causes the formation of an amorphous structure,as the lattice parameter and cell volume decreased with increased ball milling time.SEM analysis showed that the particle size becomes smaller with increased milling time.Electrochemical performance tests indicated that the activation of alloys and the electrochemical discharge capacity were significantly improved by ball milling.The discharge capacity of as-milled alloys was 52.8 mA·h/g,higher than the as-cast alloy.The maximum discharge capacity was 170.7 mA·h/g with a milling time of five hours.The P-C-T curves indicated that the plateau of hydrogenation was elevated with the milling time,and a hysteretic pressure of hydrogenation/dehydrogenation was also observed with the milling time.
作者
翟亭亭
韩忠刚
袁泽明
张羊换
ZHAI Tingting;HAN Zhonggang;YUAN Zeming;ZHANG Yanghuan(School of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Baotou 014010,Inner Mongolia,China;Department of Functional Material Research,Central Iron and Research Institute,Beijing 100081,China)
出处
《储能科学与技术》
CAS
CSCD
北大核心
2021年第1期163-169,共7页
Energy Storage Science and Technology
基金
国家自然科学基金项目(51901105,51871125,51761032)
内蒙古自然科学基金(2019BS05005)
内蒙古科技大学创新基金(2019QDL-B11)。
关键词
TiFe系合金
球磨时间
微观结构
电化学性能
TiFe-type alloy
ball milling time
microstructure
electrochemical properties