期刊文献+

On Algebraic Group Proper ties of Strong Product of Digraphs

有向图强乘积的代数群性质
下载PDF
导出
摘要 The strong product digraph G1■G2 is constructed by the known digraph G1 and G2 of small order. The digraph G1■G2 constructed by the strong product method contain G1 and G2 as its sub-graphs. Therefore, the topological structure and properties of these small digraphs G1 and G2 must affect the topological structure and properties of the large digraph. By using group theory, we prove some algebraic properties of strong product of digraphs, such as commutative law, associative law and so on.
出处 《Chinese Quarterly Journal of Mathematics》 2020年第4期424-430,共7页 数学季刊(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No. 11551002) Natural Science Foundation of Qinghai Province (Grant No. 2019-ZJ-7093)。
  • 相关文献

参考文献3

二级参考文献16

  • 1孙犁,徐俊明.强乘积图的连通度(英文)[J].中国科学技术大学学报,2006,36(3):241-243. 被引量:4
  • 2Bermond J C,Germa A,Heydemann M C.Hamiltonian cycles in strong products of graphs[J].Can.Math.Bull.,1979,22:305-309.
  • 3Godsil C,Royle G.Algebraic Graph Theory[M].New York:Springer,2001,155-156.
  • 4Král D,MaxováJ,Podbrdsky P,et al.Pancyclicityof strong products of graphs[J].Graphs and Combinatorics,2004,20 (1):91-104.
  • 5XU Jun-ming.Topological Structure and Analysis of Interconnection Networks[M].Dordrecht/ Boston/London:Kluwer Academic Publishers,2001.
  • 6XU Jun-ming.Theory and Application of Graphs[M].Dordrecht/Boston/London:Kluwer Academic Publishers,2003.
  • 7BROERE I, HATTINGH J H. Products of circulant graphs[J]. Quaest Math, 1990, 13: 191-216.
  • 8SHELDON B, AKERS B K. A group-theoretic model for symmetric innterconnection networks[J]. IEEE Trans Computers, 1989,38(4): 555-566.
  • 9ALSPACH B, PARSONS T D. A construction for vertex-transitive graphs[J]. Canad J Math, 1982, 34: 307-318.
  • 10POTOCNIK P, SAJNA M, VERRET G. Mobility of vertex-transitive graphs[J]. Discrete Math, 2007, 307: 579-591.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部