期刊文献+

高压电缆X射线数字影像深度处理和缓冲层缺陷智能识别技术 被引量:18

High Voltage Cable X-Ray Digital Image Depth Processing and Technology of Buffer Layer Defect Intelligent Recognition
下载PDF
导出
摘要 采用X射线数字成像的方式能够实现对电力电缆本体的无损检测,但目前缺乏对X射线数字影像的深度处理和缺陷识别方法,无法从原始的数字影像中直接对电缆本体和缺陷进行检测识别。因此,本文研究了电力电缆X射线数字影像深度处理和缓冲层缺陷智能识别技术,提出了全卷积神经网络(full convolution neural network,FCN)法。采用灰度处理技术,将原始的图像灰阶范围压缩至人眼可识别范围,然后进行缺陷标识,再采用传统卷积神经网络(convolution neural network,CNN)法和所提方法对图像数据进行训练,实现对电力电缆缓冲层缺陷的智能识别。结果表明,相比于CNN法,所提FCN法具有更加清晰直观的识别效果。 The nondestructive detection of power cable body can be realized by X-ray digital imaging,but there is no depth processing and defect recognition method for X-ray digital images at present.The cable body and defects can not be detected and identified directly from the original digital image.Therefore,this paper studies the advanced processing method of power cable X-ray digital image and the intelligent identification technology of buffer layer defect,and puts forward the full convolution neural network(FCN)method.By using gray level processing technology,the original image gray scale range is compressed to the human eye recognizable range,then the defect identification is carried out,and then the image data is trained by the traditional convolution neural network(CNN)and the proposed method.The intelligent recognition of power cable buffer layer defects is realized.Compared with the traditional CNN,the proposed FCN has more clear and intuitive recognition effect.
作者 刘三伟 谢亿 张军 段建家 黄福勇 段肖力 曾泽宇 LIU Sanwei;XIE Yi;ZHANG Jun;DUAN Jianjia;HUANG Fuyong;DUAN Xiaoli;ZENG Zeyu(Electric Power Research Institute of State Grid Hunan Electric Power Co.,Ltd.,Changsha 41007,China)
出处 《南方电网技术》 CSCD 北大核心 2020年第12期66-70,共5页 Southern Power System Technology
基金 国网湖南电力有限公司资助项目(5216A5200004)。
关键词 电力电缆 缓冲层缺陷 X射线数字影像 深度处理 缺陷智能识别 power cable buffer layer defect X-ray digital image depth processing intelligent defect identification
  • 相关文献

参考文献18

二级参考文献159

共引文献233

同被引文献236

引证文献18

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部