期刊文献+

过程挖掘算法研究综述

A Survey of Process Mining Algorithms
下载PDF
导出
摘要 首先对过程模型的三种表示方法Petri网、因果网和过程树进行了介绍。指出了目前过程挖掘算法研究中需要注意的三类关键问题。对主流的过程挖掘算法进行了分类总结。深入比较了当前最有效的三种过程挖掘算法Evolutionary Tree Miner、Inductive Miner和Hybrid ILP Miner,并指出了三种算法的优势和不足。最后,对过程挖掘算法的研究趋势进行了总结。 Three representation methods of process model,including petri net,causal net and process tree,are firstly introduced.Three key problems that should be noticed in the research of process mining algorithm are indicated.The major algorithms of process mining are summarized in category.Furthermore,three most effective algorithms of process mining,including Evolutionary Tree Miner,Inductive Miner,Hybrid ILP Miner,are compared,and meanwhile the advantages as well as the disadvantages are pointed out.Finally,the research trends of the process mining algorithms are concluded.
作者 敬思远 JING Siyuan(School of Artificial Intelligence,Leshan Normal University,Leshan Sichuan 614000,China;University Key Lab in Sichuan Province of Internet-based Natural Language Intelligent Processing,Leshan Normal University,Leshan Sichuan 614000,China)
出处 《乐山师范学院学报》 2020年第12期39-48,共10页 Journal of Leshan Normal University
基金 互联网自然语言智能处理四川省高校重点实验室开放项目“基于GPU集群的过程大数据挖掘方法研究”(INLP201903) 乐山师范学院培育计划项目“基于通用GPU的工作流挖掘算法研究”(ZZ201822)。
关键词 过程挖掘 PETRI网 因果网 过程树 Process Mining Petri Net Causal Net Process Tree
  • 相关文献

参考文献9

二级参考文献46

  • 1李嘉菲,刘大有,于万钧.一种能发现重复任务的过程挖掘算法[J].吉林大学学报(工学版),2007,37(1):106-110. 被引量:5
  • 2W M P van der Aalst, H A Reliefs, A J M M Werjters, B F van Dongen,A K Alves de Medeiros,M Song and H M W V erbeek. Business process mining: an industrial application[ J]. Information System, 2007,32 (5) : 713 - 732.
  • 3W M P van der Aalst, Minseok Song. Mining social networks: uncovering interaction patterns in business processes[A]. Business Process Management: 2nd International Conference, BPM 2004, Potsdam, Germany [ C ]. Berlin: Springer, 2004. 244 - 260.
  • 4W M P van der Aalst, A J M M Weijters, L Maruster. Workflow mining:Discovering process models from event logs[J]. IEEE Transactions on Knowledge and Data Engineering,2004, 16(9) : 1128 - 1142.
  • 5W van der Aalst. The application of petri nets to workflow management[ J]. The Journal of Circuits, Systems and Computers, 1998,8( 1 ) :21 - 26.
  • 6A K Alves de Medeiros, A J M M Weijters, W M P van der Aalst. Genetic process mining: an experimental evaluation [J]. Data & Knowledge Engineering, 2007,14 (4) : 245 - 304.
  • 7W M P van der Aalst, A K Alves de Medeiros, and A J M M Weijters. Genetic Process Mining[A]. Applications and Theory of Petri Nets:26th International Conference ICATPN 2005, Miam USA[C]. Berlin: Springer, 2005.48 - 69.
  • 8Lijie Wen, Wil M P van der Aalst, Jianmin Wang, Jiaguang Sun. Mining process models with non-free-choice constructs [J]. Data Min Knowl Disc,2007,15(2) : 145 - 180.
  • 9J E Cook, A L Wolf. Automating process discovery through event-data analysis [A]. Proceedings of the 17th international conference on Software engineering [C]. Washington, USA: Association for Computer Machinery, 1995.73 - 82.
  • 10M Hammori, J Herbst, N Kleiner. Interactive workflow mining [A]. Proceedings of the 2nd International Conference on Business Process Management [C. Berlin: Springer, 2004.211 - 226.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部