期刊文献+

融合外部语义知识的中文文本蕴含识别 被引量:1

Chinese Textual Entailment Recognition Fused with External Semantic Knowledge
下载PDF
导出
摘要 基于神经网络的文本蕴含识别模型通常仅从训练数据中学习推理知识,导致模型泛化能力较弱。提出一种融合外部语义知识的中文知识增强推理模型(CKEIM)。根据知网知识库的特点提取词级语义知识特征以构建注意力权重矩阵,同时从同义词词林知识库中选取词语相似度特征和上下位特征组成特征向量,并将注意力权重矩阵、特征向量与编码后的文本向量相结合融入神经网络的模型训练过程,实现中文文本蕴含的增强识别。实验结果表明,与增强序列推理模型相比,CKEIM在15%、50%和100%数据规模的CNLI训练集下识别准确率分别提升了3.7%、1.5%和0.9%,具有更好的中文文本蕴含识别性能和泛化能力。 The textual entailment recognition model based on neural network learns inference knowledge only from training data,which leads to the weak generalization ability of the model.This paper proposes a Chinese Knowledge Enhanced Inference Model(CKEIM)fused with external semantic knowledge.Based on the features of the HowNet knowledge base,the features of word-level semantic knowledge are extracted to construct an attention weight matrix.At the same time,the semantic similarity features of words and hyponymy features are selected from the CiLin knowledge base of synonyms to form the feature vector.Finally,the attention weight matrix,the feature vector and the encoded text vectors are integrated into the training of the neural network model to implement enhanced recognition of Chinese textual entailment.Experimental results show that compared with the Enhanced Sequential Inference Model(ESIM),CKEIM improves the recognition accuracy by 3.7%,1.5%and 0.9%respectively on CNLI training sets of 15%,50%and 100%data scales,which demonstrates that it has better Chinese textual entailment recognition performance and generalization ability.
作者 李世宝 李贺 赵庆帅 殷乐乐 刘建航 黄庭培 LI Shibao;LI He;ZHAO Qingshuai;YIN Lele;LIU Jianhang;HUANG Tingpei(College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao,Shandong 266580,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第1期44-49,共6页 Computer Engineering
基金 国家自然科学基金(61972417,61872385) 中央高校基本科研业务费专项资金(18CX02134A,19CX05003A-4,18CX02137A)。
关键词 中文文本蕴含 自然语言推理 注意力机制 双向长短期记忆网络 知网 词林 Chinese textual entailment natural language inference attention mechanism Bi-directional Long Short-Term Memory(BiLSTM)network HowNet CiLin
  • 相关文献

参考文献4

二级参考文献30

  • 1梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 2李峰,李芳.中文词语语义相似度计算——基于《知网》2000[J].中文信息学报,2007,21(3):99-105. 被引量:106
  • 3董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 4Dagan I, Glickman O. Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability : C l// Proceedings of PASCAL Workshop on Learning Methods for Text Understanding and Mining. Grenoble, France: Association for Comoutational Linzuistics.2004.
  • 5Tatu M, Moldovan D. COGEX at RTE 3 I C ]//Pro- ceedings of ACL-PASCAL Workshop on Textual Entail- ment and Paraphrasing. Prague, Czech Republic : Association for Computational Linguistics ,2007:22-27.
  • 6Harmeling S. Inferring Textual Entailment with a Pro- babilistically Sound Calculus [ J ]. Natural Language Engineering, 2009,15 (4) :459-477.
  • 7Bar-Haim R,Berant J ,Dagan I. A Compact Forest for Scal- able Inference over Entailment and Paraphrase Rules[ C]// Proceedings of Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics ,2009 : 1056-1065.
  • 8Malakasiotis P,Androutsopoulos L Learning Textual Entail- ment Using SVMs and String Similarity Measures [ C]// Proceedings of ACL-PASCAL Workshop on Textual Entailment and Paraphrasing. Association for Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics ,2007:42-47.
  • 9Maytham A,Allan R. Natural Language Inference for Ara- bic Using Extended Tree Edit Distance with Subtrees [ J ]. Journal of Artificial Intelligence Research, 2013,48 ( 5 ) : 1-22.
  • 10Wang Xiaolin, Zhao Hai, Lu Baoliang. BCMI-NLP Labeled-alignment-based Entailment System for NTCIR-10 RITE-2 TaskI C]//Proceedings of the 10th NTCIR Con- ference. Tokyo, Japan: National Institute of Informatics, 2013:18-21.

共引文献68

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部