期刊文献+

等内积对角拉丁方正交偶及两类幻方

Orthogonal Diagonal Latin Squares with Equiscalar Product and Two Kinds of Magic Squares
原文传递
导出
摘要 建立3^2阶和(2k+1)^2(3■(2k+1))阶等内积性对角拉丁方正交偶的一般公式,引入矩阵的函数型Kronecker积的概念,以此为基础解决(2m+1)^2(m≥1)阶等内积性对角拉丁方正交偶的存在性和构造性问题.进而,(2m+1)^2(m≥1)阶二次幻方、加乘幻方的存在性和构造性问题得到彻底解决,且将构成两类幻方的数集拓广至二维等差矩阵. For the cases of orders 3^2 and(2k+1)^2(3■(2k+1)),the general formulae for a pair of orthogonal diagonal Latin squares with the property of equi-scalar product have been established directly.We introduce a number of concepts of the functional Kronecker products which are used to obtain the existence and construction of orthogonal pair of diagonal Latin squares with the property of equi-scalar of order(2m+1)^2(m≥1).As an application,the existence and construction problems of quadratic magic squares and addition-multiplication magic squares of order(2m+1)^2 have been solved and the number sets constructing such kinds of magic squares can be extended to the arithmetic matrices in each direction.
作者 张世德 李程 张迪 ZHANG Shi-de;LI Cheng;ZHANG Di(College Mathematical and Information Science,Henan Normal University,Xinxiang 453007,China;Daxiang Press Co.Ltd.Zhengzhou 450044,China;Civil Safe Insurance Pic,Phnom Penh,Cambodia)
出处 《数学的实践与认识》 北大核心 2020年第24期215-230,共16页 Mathematics in Practice and Theory
关键词 等度方阵 矩阵的函数型Kronecker积 等内积对角拉丁方正交偶 二维等差矩阵 二次幻方 加乘幻方 equal multiplicity matrix functional Kronecker product of matrices orthogonal pair of diagonal Latin squares with the property of equi-scalar product arithmetic matrix in each direction quadratic magic square addition-multiplication magic square
  • 相关文献

参考文献10

二级参考文献37

  • 1ZHANGShi-de,HUQing-wen,WANGJi-zhao.Constructing Pandiagonal Snowflake Magic Squares of Odd Order[J].Chinese Quarterly Journal of Mathematics,2004,19(2):172-185. 被引量:3
  • 2张世德.正交半泛对角线拉丁方及其应用[J].数学的实践与认识,1993,23(4):40-47. 被引量:5
  • 3Denes J. Keedwell A.D. Latin Squares and their Applications [M]. Budepest, Akdemiai Kiado, 1974: 1-229.
  • 4Л.С.邦德列雅金.曹锡华译.连续群(上册)[M].北京:科学出版社,1957,10:1-54.
  • 5梁培基 顾同新.平方幻方与双重幻方的构造.数学传播,1989,13(3):65-69.
  • 6李立,内蒙古大学学报,1988年,19卷,1期
  • 7李立,数学进展,1988年,17卷,1期
  • 8李立,数学季刊,1987年,2卷,3期
  • 9李立,内蒙古大学学报,1986年,17卷,2期
  • 10李立,内蒙古大学学报,1985年,16卷,4期

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部