期刊文献+

基于特征融合的脑部图像多级分类 被引量:6

Brainimage recognition and multi-level classification
原文传递
导出
摘要 目前医学图像数量巨大,利用计算机处理医学图像从而辅助医疗诊断是医学领域研究的热点。根据脑部图像具有对称性的特点,选择支持向量机-递归特征消除(SVM-RFE)算法对融合特征进行特征选择过程中,引入Pearson系数衡量特征信息的冗余度,将特征相关性指标融入SVM-RFE特征子集的筛选标准中,提升了融合特征的分类性能。在一级分类基础上,基于特征学习方法,构建了2Layer-RBM-KNN二级脑部图像分类模型,增加网络深度以进行更高层次的特征抽象,并且结合数据集探究了分类器的选择,实现样本再分类。 Owing to massive medical images and powerful computer processing capability,computer-aided diagnosis works in analysing medical images and becomes a research hotspot currently in the cross field of computer science and medicine.According to the symmetry of brain images,in the process of feature selection for fusion by SVM-RFE algorithm,the pearson coefficient,used to measure the feature redundancy,is integrated into the screening criteria of the SVM-RFE feature subset.Thus,the classification performance of the fusion feature is improved.A multi-level classification model for brain image is constructed.Based on the approximate symmetry characteristics of the brain image,the first-level classification model for brain images is built,and a gray cosine similarity classification method was proposed to classify brain images initially.After that,a method based on feature learning is put forward named 2 Layer-RBM-KNN,it increases the network depth for a greater feature abstraction,explores the classifiers choice with dataset,achieving sample reclassification.
作者 刘承裕 Liu Chengyu(Guilin People's Hospital of Pingle County,Guilin 542400,China)
出处 《国外电子测量技术》 2020年第11期28-33,共6页 Foreign Electronic Measurement Technology
关键词 脑部图像识别分类 特征融合 RBM KNN brain image recognition and classification feature fusion RBM KNN
  • 相关文献

参考文献7

二级参考文献68

  • 1张弘,卢奕南.基于内容的图像检索技术在医学领域中的应用[J].仪器仪表学报,2005,26(z2):682-685. 被引量:3
  • 2.企业档案电子化管理标准[S].[S].北京:国家工商行政管理局,2002..
  • 3.企业档案处理技术标准[S].[S].北京:国家工商行政管理局,2000..
  • 4Gonzalez R C,Woods R E.Digital Image Processing,Second Edition.Prentice-Hall Inc.,March 2003.72~74
  • 5Jongsan L.Digital image enhancement and noise filtering by use of local statistics PAMI-I,1980(2):165~168
  • 6Highnam R,Brady M.Model-based image enhancement of far infrared images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(4):410~415
  • 7Tang M,Ma S D,Xiao J.Model-based adaptive enhancement of far infrared image sequences[J].Pattern Recognition Letters,2000,21:827~835
  • 8I,EVIN A,NADLER B. Natural image denoising: opti- mality and inherent bounds [ C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 : 2833-2840.
  • 9BUADES A, COLL B, MOREL J M. Image denoising methods :a new nonlocal prineiple [ J ]. SIAM Review, 2010,52( 1 ) : 113-147.
  • 10AZZABOU N,PARAGIOS N, GUICHARD F. Image de- noising based on adapted dictionary computation [ J ]. IEEE International Conference on Image Processing (ICIP) ,2007:109-112.

共引文献71

同被引文献55

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部