期刊文献+

超声人工智能联合TI-RADS分类在甲状腺结节鉴别诊断中的辅助价值 被引量:6

Assistant value of ultrasound artificial intelligence combined with TI-RADS classification in differential diagnosis of thyroid nodules
下载PDF
导出
摘要 目的:探讨超声人工智能联合美国放射学会甲状腺影像与报告系统(TI-RADS)分类在甲状腺结节良恶性鉴别诊断中的价值。方法:回顾性分析860例(共920个结节)行甲状腺手术的患者,术前均行超声检查,并与术后组织病理学结果对照,比较人工智能、TI-RADS分类及两者联合诊断的效能,采用Kappa检验分析不同诊断方式的一致性。结果:人工智能、TI-RADS及联合检查诊断甲状腺恶性结节的准确率分别为78.80%(725/920)、80.98%(745/920)及85.00%(782/920);敏感度76.36%(252/330)、80.61%(266/330)及86.36%(285/330);特异度分别为80.17%(473/590)、81.19%(479/590)及84.24%(497/590)。ROC曲线分析人工智能、TI-RADS分类及联合诊断甲状腺恶性结节的AUC分别为0.783、0.792及0.853(Z=1.465,P=0.143)。结论:人工智能与TI-RADS分类对甲状腺结节均具有较高的诊断效能,联合诊断能更有效地鉴别甲状腺结节的良恶性。 Objective:To explore the value of ultrasound artificial intelligence(AI)combined with American College of Radiology(ACR)thyroid imaging reporting and data system(TI-RADS)in the differential diagnosis of benign and malignant thyroid nodules.Methods:A total of 920 thyroid nodules of 860 patients who underwent thyroid surgery were analyzed retrospectively.Their ultrasound images were reclassified by ACR TI-RADS.The results of AI,TI-RADS classification and joint diagnosis were compared with the results of histopathology,and Kappa test was used to analyze the consistency of different diagnosis methods.Results:The accuracy of AI,TI-RADS and combined examination in the diagnosis of thyroid malignancy were 78.80%(725/920),80.98%(745/920)and 85.00%(782/920),the sensitivity were 76.36%(252/330),80.61%(266/330)and 86.36%(285/330),the specificity were 80.17%(473/590),81.19%(479/590)and 84.24%(497/590).In the ROC curve analysis of AI,TI-RADS classification and joint diagnosis,the AUC of thyroid malignant nodule were 0.783,0.792 and 0.853(Z=1.465,P=0.143),respectively.Conclusions:AI and TI-RADS classification examination have higher diagnostic efficiency for thyroid nodules,and the joint diagnosis can be more effective.
作者 王洪杰 于霞 张恩东 马立勇 汤华晓 WANG Hongjie;YU Xia;ZHANG Endong;MA Liyong;TANG Huaxiao(Otolaryngology Head and Neck Surgery,Weihai Maternal and Child Health Hospital,Weihai 264200,China)
出处 《中国中西医结合影像学杂志》 2021年第1期81-84,共4页 Chinese Imaging Journal of Integrated Traditional and Western Medicine
基金 山东省医药卫生科技发展计划项目(2018WS111,2019WS221) 山东省自然科学基金(ZR2018MF026)。
关键词 超声检查 人工智能 甲状腺影像与报告系统 甲状腺结节 Ultrasonography Artificial intelligence Thyroid imaging reporting and data system Thyroid nodule
  • 相关文献

参考文献8

二级参考文献100

  • 1李晓峰,沈毅,王强.超声乳腺肿瘤图像计算机辅助诊断系统[J].吉林大学学报(工学版),2009,39(3):770-775. 被引量:7
  • 2徐岩,马大庆.计算机辅助检测在医学影像领域的应用进展[J].中华放射学杂志,2007,41(11):1270-1272. 被引量:4
  • 3American Thyroid Association (ATA) Guidelines Taskforce on Thy- roid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, et al. Revised American thyroid association manage- ment guidelines for patients with thyroid nodules and differentiat- ed thyroid cancer[J]. Thyroid, 2009, 19(11):1167-1214.
  • 4Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid as- sociation management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid as- sociation guidelines task force on thyroid nodules and differentiat- ed thyroid cancer[J]. Thyroid, 2016, 26(1):1-133.
  • 5Tuttle RM, Haddad RI, Ball DW, et al. Thyroid carcinoma, version 2.2014[J]. J Natl Compr Canc Netw, 2014, 12(12):1671-1680.
  • 6Xing MZ. Molecular pathogenesis and mechanisms of thyroid can- cer[J]. Nat Rev Cancer, 2013, 13(3):184-199.
  • 7De Biase D, Gandolfi G, Ragazzi M, et al. TERT promoter mutations in papillary thyroid microcarcinomas[J]. Thyroid, 2015, 25(9):1013- 1019.
  • 8Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients[J]. World J Surg, 2010, 34(1):28-35.
  • 9Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid [J]. Thyroid, 2003, 13(4):381-387.
  • 10Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer[J]. J Clin Oncol, 2015, 33(1):42-50.

共引文献497

同被引文献62

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部