期刊文献+

基于ARMA-BP组合模型的装备故障率预测方法 被引量:8

Research on the Equipment Failure Rate Prediction Method Based on ARMA-BP Combined Model
下载PDF
导出
摘要 为解决单一模型预测装备故障率预测误差大、精度低的问题,提出了一种基于ARMA-BP组合模型的装备故障率预测方法。在建立ARMA模型和BP神经网络模型的基础上,采用加法集成法建立ARMA-BP组合预测模型,并利用方差倒数法确定ARMA模型和BP神经网络模型的权重系数。以某型装甲装备故障率数据为研究对象,对比ARMA模型、BP神经网络模型和ARMA-BP组合模型故障率预测结果,表明:相比于单一预测模型,ARMA-BP组合模型的装备故障率预测结果精度更高。 In order to solve the problem of large errors and low prediction accuracy existing in the equipment failure rate prediction based on single model,an equipment failure rate prediction method based on ARMA-BP combined model is proposed.Based on the establishment of ARMA model and BP neural network model,the ARMA-BP combined prediction model is established by the additive integration method,and the weight coefficient of ARMA model and BP neural network model is determined by the inverse method of variance.The failure rate data of a certain type of armored equipment is regarded as the research object,the failure rate prediction results of ARMA model,BP neural network model and ARMA-BP combined model are compared,the result shows that compared with the single prediction model,the equipment failure rate prediction result of ARMA-BP combined model is more accurate.
作者 徐达 周诚 关矗 王小闯 XU Da;ZHOU Cheng;GUAN Chu;WANG Xiao-chuang(Department of Arms and Control,Academy of Army Armored Force,Beijing 100072,China)
出处 《火力与指挥控制》 CSCD 北大核心 2021年第1期83-87,共5页 Fire Control & Command Control
基金 国防装备预研基金资助项目(41404010202)。
关键词 故障率预测 ARMA模型 BP神经网络 组合模型 failure rate prediction ARMA model BP neural network combined model
  • 相关文献

参考文献9

二级参考文献72

共引文献164

同被引文献114

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部