期刊文献+

基于自适应UKF算法的锂电池荷电状态估计策略 被引量:1

An Estimation Strategy of SOC for Lithium Battery Based on Adaptive UKF Algorithm
下载PDF
导出
摘要 针对噪声的未知统计特性会导致锂电池荷电状态估计精度不高的问题,提出一种自适应无迹卡尔曼滤波算法。算法以锂电池的Thevenin一阶RC模型为研究基础,初始阶段基于协方差匹配判据对状态初值偏差情况进行判断,若存在偏差则引入次优渐消因子修正均值协方差进行抑制,能有效克服状态初值偏差问题,在后继估计过程中,利用Sage-Husa估计器在线估计未知观测噪声的统计特性,以减小荷电状态的估计误差。最终实验结果表明,自适应无迹卡尔曼滤波算法能明显改善锂电池荷电状态的估计精度和收敛速度。 Aiming at the problem that the estimation accuracy of SOC of lithium battery is not high due to the unknown statistical characteristics of noise,an adaptive unscented Kalman filter algorithm is proposed in this paper.The algorithm is based on Thevenin first-order RC model of lithium battery.In the initial stage,the covariance matching criterion is used to judge the initial value deviation of the state.If there is a deviation,a suboptimal fading factor is introduced to modify the mean covariance to suppress the deviation,which can effectively overcome the problem of initial state value deviation.In the subsequent estimation process,the Sage-Husa estimator is used to estimate the statistical characteristics of the unknown observed noise online to reduce the estimation error of the state of charge.
机构地区 江苏理工学院
出处 《工业控制计算机》 2021年第1期136-139,共4页 Industrial Control Computer
基金 江苏理工学院科研横向项目(KYH20163)。
关键词 荷电状态 次优渐消因子 噪声 精度 state of charge suboptimal fading factor noise accuracy
  • 相关文献

参考文献6

二级参考文献68

  • 1邓志东,孙增圻.一种对成片连续野值不敏感的鲁棒Kalman滤波[J].清华大学学报(自然科学版),1994,34(1):54-61. 被引量:18
  • 2裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 3鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:60
  • 4Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 5Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 6Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 7Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 8Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 10Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.

共引文献316

同被引文献20

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部