期刊文献+

Survey of intrusion detection systems:techniques,datasets and challenges 被引量:32

原文传递
导出
摘要 Cyber-attacks are becoming more sophisticated and thereby presenting increasing challenges in accurately detecting intrusions.Failure to prevent the intrusions could degrade the credibility of security services,e.g.data confidentiality,integrity,and availability.Numerous intrusion detection methods have been proposed in the literature to tackle computer security threats,which can be broadly classified into Signature-based Intrusion Detection Systems(SIDS)and Anomaly-based Intrusion Detection Systems(AIDS).This survey paper presents a taxonomy of contemporary IDS,a comprehensive review of notable recent works,and an overview of the datasets commonly used for evaluation purposes.It also presents evasion techniques used by attackers to avoid detection and discusses future research challenges to counter such techniques so as to make computer systems more secure.
出处 《Cybersecurity》 CSCD 2019年第1期1-22,共22页 网络空间安全科学与技术(英文)
  • 相关文献

参考文献1

二级参考文献13

  • 1C. Kruegel, F. Valeur, G. Vigna, Intrusion Detection and Correlation Challenges and Solutions, Springer Science, Boston, 2005.
  • 2J. Zhang, M. Zulkernine, Random-forests-based network intrusion detection systems, IEEE Transactions on Systems Man and Cybernetics 38 1,2008) 649-659.
  • 3H.A. Nguyen, D. Choi, Application of Data Mining to Network Intrusion Detection: Classifier Selection Model, In Challenges for Next Generation Network Operations and Service Management, Springer Berlin, Heidelberg, 2008.
  • 4D.M. Farid, N. Harbi, M.Z bayes and decision tree for International Journal of Rahman, Combining naive adaptive intrusion detection, Network Security & ItsApplications (IJNSA) 2 (2010) 12-25.
  • 5NSL-KDD Dataset for Network-based Intrusion Detection Systems, http://nsl.cs.unb.ca/NSL-KDD/(accessed March 2009).
  • 6S. Lakhina, S. Joseph, B. Verma, Feature reduction using principal component analysis for effective anomaly-based intrusion detection on NSL-KDD, International Journal of Engineering Science and Technology 2 (2010) 1790-1799.
  • 7M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD CUP 99 dataset, in: Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Security and Defense Applications, Canada, 2009.
  • 8M.W. Berry, M. Browne, Lecture Notes in Data Mining, World Scientific Publishing Co. Pte. Ltd, 2006.
  • 9J.W. Han, M, Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann Publishers, Elsevier Inc, 2006.
  • 10N. Gayatri, S. Nickolas, A.V. Reddy, Feature selection using decision tree induction in class level metrics dataset for software defect predictions, in: Proceedings of the World Congress on Engineering and Computer Science 2010, San Francisco, USA, 2010.

共引文献4

同被引文献66

引证文献32

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部