期刊文献+

海表面盐度的高精度预测模型 被引量:4

High-Precision Prediction Model for Sea Surface Salinity
下载PDF
导出
摘要 为了建立高精度的海洋表面盐度预测模型,采用BP神经网络的方法,针对SMOS卫星level 1C级亮度温度数据和辅助数据建立了一种海表面盐度预测模型,以ARGO浮标观测值作为海表盐度实测值来检验新模型预测结果的准确度,同时利用验证集对模型的精度进行验证。结果表明:通过新模型预测的海表盐度(SSS0)比SMOS卫星的3个粗糙度模型盐度产品(SSS1,SSS2,SSS3)精度高;SSS0,SSS1,SSS2,SSS3与ARGO浮标实测盐度(SSS ARGO)的均方根误差分别为0.8473,2.0417,2.0288和2.0805,平均绝对误差分别为0.7553,1.4226,1.4216和1.4566,SSS0与SSS ARGO的均方根误差和绝对平均误差值都明显小于SSS1,SSS2和SSS3与SSS ARGO的;由此可见,建立的海表盐度预测模型精度较高。新模型为海表盐度的反演算法提供了新思路。 To build a high-precision ocean surface salinity prediction model,the back propagation(BP)neural network method is utilized to establish a sea surface salinity prediction model based on soil moisture and ocean salinity(SMOS)satellite level 1C brightness and temperature data and auxiliary data.The array for real-time geostrophic oceanography(ARGO)buoy observations are used as the measured value of sea surface salinity to test the accuracy of the new model s prediction results,and the verification set is used to verify the accuracy of the model.The results show that the sea surface salinity predicted by the new model(referred to as SSS0)is more accurate than the three roughness model salinity products of soil moisture ocean salinity(SMOS)satellites(referred to as SSS1,SSS2,and SSS3).The accuracy of the root mean square errors of SSS0,SSS1,SSS2,SSS3 compared to SSS ARGO are 0.8473,2.0417,2.0288 and 2.0805,and the absolute average errors are 0.7553,1.4226,1.4216 and 1.4566.Both of the root mean square error and absolute average error of SSS0 are significantly smaller than SSS1,SSS2,and SSS3.Therefore,it shows that the sea surface salinity prediction model established in this paper has higher accuracy,and it provides a novel way for generating the sea surface salinity inversion algorithm.
作者 王颖超 柳青青 李洪平 赵红 WANG Ying-chao;LIU Qing-qing;LI Hong-ping;ZHAO Hong(Department of Marine Technology,Ocean University of China,Qingdao 266100,China;Business College,Qingdao University,Qingdao 266100,China;School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China)
出处 《海洋科学进展》 CAS CSCD 北大核心 2021年第1期37-44,共8页 Advances in Marine Science
基金 国家自然科学基金项目——稳健主成分回归的数值方法研究(11871444)。
关键词 海表盐度 BP神经网络 SMOS卫星 ARGO浮标 sea surface salinity the back propagation(BP)neural network the soil moisture and ocean salinity(SMOS)satellite the array for real-time geostrophic oceanography(ARGO)buoy
  • 相关文献

参考文献5

二级参考文献57

  • 1史久新,朱大勇,赵进平,曹勇.海水盐度遥感反演精度的理论分析[J].高技术通讯,2004,14(7):101-105. 被引量:14
  • 2Agarwal N, Sharma R, Basu S, et al. 2007. Derivation of salinity pro- files in the Indian Ocean from satellite surface observations. IEEE Geoscience and Remote Sensing Letters, 4(2): 322-325.
  • 3Argo Science Team. 2001. Report of the Argo Science Team Second Meeting. In: Koblinsky C ], Smith N R, eds. Argo: The global ar- ray of profiling floats, in Observing the Oceans in the 21st Cen- tury. Melbourne: GODAE Project Office, Bureau of Meteoro- logy, 248-258.
  • 4Ballabrera-Poy J, Mourre B, Garcia-Ladona E, et al. 2009. Linear and non-linear T-S models for the eastern North Atlantic from Argo data: Role of surface salinity observations, Deep-Sea Research Part I: Oceanographic Research Papers, 56(10): 1605-1614.
  • 5Boutin l, Martin N. 2006. Argo upper salinity measurements: Per- spectives for L-band radiometers calibration and retrieved sea surface salinity validation. IEEE Geoscience and Remote Sens- ing Letters, 3(2): 202-206.
  • 6Boutin J, Martin N, Reverdin G, et al. 2013. Sea surface freshening in- ferred from SMOS and ARGO salinity: impact of rain. Ocean Science, 9(1): 183-192.
  • 7Carnes M R, Teague W J, Mitchell J L. 1994. Inference of subsurface thermohaline structure from fields measurable by satellite. Journal of Atmospheric and Oceanographic Techology, 11 (2): 551-566.
  • 8Emery W J. 1975. Dynamic height from temperature profiles. Journal of Physical Oceanography, 5(2): 369-375.
  • 9v Emery W J, Weft R T. 1976. Temperature-salinity curves in the Pacific and their application to dynamic height computation. Journal of Physical Oceanography, 6(4): 613-617.
  • 10Halldor B, Venegas S A. 1997. A manual for EOF and SVD analyses of climatic data. In: CCGCR Rep. Montreal, QC, Canada: McGill Univ, 54.

共引文献15

同被引文献74

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部