期刊文献+

基于牛顿迭代控制的分区动态无功补偿建模与仿真 被引量:3

Modeling and Simulation of Dynamic Reactive Power Compensation Based on Newton Iterative Control
下载PDF
导出
摘要 针对TSC动态无功补偿对动态负载的检测与响应速度较慢以及无法实现完全的无功补偿等问题,构建基于牛顿迭代控制的分区动态无功补偿系统仿真模型。本模型在控制量与无功补偿功率函数关系拟合的基础上采用牛顿迭代及优化控制进行求解,并通过补偿无功区间判定实现快速动态无功补偿。仿真实验结果表明,本系统能实现固定负载和动态无功负载的实时、快速、连续无功补偿,且稳态误差小、响应速度快。 In view of the slow detection and response speed of TSC Dynamic Reactive Power Compensation to dynamic load and the failure to realize complete reactive power compensation,a simulation model of dynamic reactive power compensation system based on Newton iterative control is constructed.On the basis of function relation fitting between control variables and reactive power compensation power,the model is solved by Newton iteration and optimal control,and fast dynamic reactive power compensation is realized by judging the compensation reactive power interval.The simulation results show that the system can realize real-time,fast and continuous reactive power compensation of fixed load and dynamic reactive load,with small steady-state error and fast response speed.
作者 王静 孙春虎 方愿捷 WANG Jing;SUN Chun-hu;FANG Yuan-jie(School of Electronic Engineering,Chaohu University,Chaohu Anhui 238024)
出处 《巢湖学院学报》 2020年第6期104-114,共11页 Journal of Chaohu University
基金 安徽省高校优秀青年人才项目(项目编号:gxyq2019083) 巢湖学院校级科研重点项目(项目编号:XLZ-201702) 巢湖学院校级科研一般项目(项目编号:XLY-201705) 安徽省高等学校省级质量工程项目(项目编号:2019jyxm0395)。
关键词 无功补偿 牛顿迭代 函数拟合 MATLAB仿真 reactive compensation Newton iteration function fitting Matlab simulation
  • 相关文献

参考文献6

二级参考文献28

  • 1李升.基于九区图的变电站电压无功控制策略研究[J].冶金动力,2004(5):3-6. 被引量:10
  • 2刘文胜,高俊如,马士英.利用模糊控制技术的动态无功补偿装置[J].农村电气化,2006(6):55-56. 被引量:4
  • 3[1]KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. New York: Pergamon, 1982.
  • 4[2]ORTEGA J M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.
  • 5[3]ARGYROS I K. Remarks on the convergence of Newton's method under Holder continuity conditions[J]. Tamkang J Math, 1992, 23(2): 269-277.
  • 6[4]ROKNE J. Newton's method under mild differentiability conditions with error analysis [J].Numer Math, 1972, 18(2): 401-412.
  • 7[5]ARGYROS I K. The Newton-Kantorovich method under mild differentiability conditions and the Ptak error estimates[J]. Monatsh Math, 1990, 101(1):175-193.
  • 8[6]APPELL J, DE PASCALE E, LYSENKO L V, et al. New results on Newton-Kantorovich approximations with applications to nonlinear integral equations[J]. Numer Funct Anal Optimit, 1997, 18(1): 1-17.
  • 9[7]HERNANDEZ M A. Relaxing convergence conditions for Newton's method[J]. J Math Anal Appl, 2000,249(2): 463-475.
  • 10[8]HUANGZhang-da. A note on the Kantorovich theorom for Newton iteration [J]. J Comput Appl Math, 1993, 47(2): 211-217.

共引文献15

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部