期刊文献+

基于引导滤波和快速共现滤波的红外和可见光图像融合 被引量:7

Infrared and visible image fusion based on guided filter and fast co-occurrence filter
下载PDF
导出
摘要 针对红外和可见光图像融合结果背景信息不足、对比度较低的问题,提出一种结合引导滤波和快速共现滤波的融合方法。首先,以高斯滤波将源图像分解为细节层和基础层。然后以去除值域滤波器、全局统计共现信息的方式简化共现滤波,形成快速共现滤波,再用其融合细节层;此外,引入窗口因子,用图像大小与窗口因子比值确定引导滤波窗口值,再用其融合基础层。实验结果表明该算法增加了图像背景细节,提高了人物与背景的对比度。主观和客观的实验分析验证了该算法的有效性。 Aiming at the problem of insufficient background information and low contrast of the fusion result of infrared and visible light images,this paper proposed a fusion method combining guided filtering and fast co-occurrence filtering.First,it decomposed source images into a detail layer and a base layer by Gaussian filtering.Then it simplified the co-occurrence filtering by removing the range filter and global statistical co-occurrence information to form a fast co-occurrence filter,and then used it to fuse the detail layer.In addition,it introduced a window factor,and determined window for guided filter by the ratio of the image size and the window factor,then used it to fuse the base layer.Experimental results show that the algorithm increases the background details of the image and improves the contrast between the person and the background.Subjective and objective experimental analysis verifies the effectiveness of the algorithm.
作者 朱文鹏 陈莉 张永新 Zhu Wenpeng;Chen Li;Zhang Yongxin(School of Information Science&Technology,Northwest University,Xi’an 710127,China;School of Information Technology,Luoyang Normal University,Luoyang Henan 471934,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第2期600-604,610,共6页 Application Research of Computers
基金 中国博士后科学基金项目(2015M582697)。
关键词 图像融合 红外和可见光图像 快速共现滤波 引导滤波 image fusion infrared and visible images fast co-occurrence filter guided filter
  • 相关文献

参考文献3

二级参考文献34

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2闫莉萍,刘宝生,周东华.一种新的图像融合及性能评价方法[J].系统工程与电子技术,2007,29(4):509-513. 被引量:29
  • 3J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 4N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 5Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 6Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 7S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.
  • 8Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 9Dutra LV,R Huber.Feature extraction and selection for ERS-1/2 InSAR classification[J].International Journal of Remote Sensing,1999,20(5):993-1016.
  • 10Leen-Kiat Soh,Costas tsatsoulis.Segmentation of satellite imagery of natural scenes using data mining[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1086-1099.

共引文献292

同被引文献59

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部