期刊文献+

基于Sigmoid框架的非负最小均方算法 被引量:2

Robust Nonnegative Least Mean Square Algorithm Based on Sigmoid Framework
下载PDF
导出
摘要 脉冲噪声会导致非负算法在迭代过程中存在过大的误差值,进而破坏算法的稳定性使其性能严重下降,对此该文提出一种基于Sigmoid框架的非负最小均方算法(SNNLMS)。该算法将传统的非负代价函数嵌入Sigmoid框架中得到新的代价函数,新的代价函数具有抑制脉冲噪声影响的特性。此外,为了增强SNNLMS算法在稀疏系统识别问题上的鲁棒性,该文还提出基于反比例函数的反比例Sigmoid非负最小均方算法(IP-SNNLMS)。仿真结果表明SNNLMS算法有效地解决了脉冲噪声造成的失调问题;IP-SNNLMS增强了算法鲁棒性,改进了算法在稀疏系统识别问题中收敛速率上的缺陷。 Impulsive noise causes nonnegative algorithms to yield excessive error during iterations,which will damage the stability of the algorithm and causes performance degradation.In the paper,a NonNegative Least Mean Square algorithm based on the Sigmoid framework(SNNLMS)is proposed.The algorithm embeds the conventional nonnegative cost function into the Sigmoid framework to receive a new cost function.The new cost function has the characteristics of suppressing the impact of impulse noise.In addition,in order to enhance the robustness of the SNNLMS algorithm under sparse system identification,the Inversely-Proportional Sigmoid NonNegative Least Mean Square(IP-SNNLMS)is proposed based on the inversely-proportional function.Simulation results demonstrate that the SNNLMS algorithm effectively solves the problem of misadjustment caused by impulsive noise.IP-SNNLMS enhances the robustness of the algorithm and improves the defect of the convergence rate of the SNNLMS algorithm under the sparse system identification.
作者 樊宽刚 邱海云 FAN Kuan’gang;QIU Haiyun(Jiangxi University of Science and Technology,Ganzhou 341000,China)
机构地区 江西理工大学
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第2期349-355,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61763018),江西省“03专项及5G项目”(20193ABC03A058) 江西省教育厅重点项目(GJJ170493) 江西理工大学清江青年英才支持计划。
关键词 Sigmoid框架 非负最小均方 脉冲噪声 稀疏系统识别 反比例函数 Sigmoid framework NonNegative Least Mean Square(NNLMS) Impulsive noise Sparse system identification Inversely-proportional function
  • 相关文献

参考文献3

二级参考文献22

  • 1王平波,蔡志明.有色非高斯背景下微弱信号的Rao有效绩检验[J].电子学报,2007,35(3):534-538. 被引量:8
  • 2Kalluri S,and Arce G R.Adaptive weighted myriad filter algorithms for robust signal processing.IEEE Tran.on Signal Processing,1998,46(2):322-334.
  • 3Belge M and Miller E L.A sliding window RLS-like adaptive algorithm for filtering alpha-stable noise.IEEE Signal Processing Letters,2000,7(4):86-89.
  • 4Dahanyake B W and Upton A R M.Derivation of momentum LMS learning algorithms by minimizing objective function.IEEE International Conference on Neural Networks,Orlando,USA,March 1993,2:831-835.
  • 5Aydin G,Tranrikulu O,and Cetin E.Robust least mean mixed norm adaptive filtering for alpha-stable random processes IEEE ISCAS 97,Hong-Kong,China,June 1997,4:2296-2299.
  • 6Pillai S S and Harisankar M.Simulted performance of a DS spread spectrum system in impulsive atmospheric noise.IEEE Trans.on Electromagn.Compat.,1987,29(1):80-82.
  • 7Bouvet M and Schwartz S C.Comparison of adaptive and robust receivers for signal detection in ambient underwater noise.IEEE Trans.on Acoust.Speech Signal Processing,1989,37(5):621-626.
  • 8Nikias C L and Shao M.Signal Processing with Alpha-Stable Distributions and Applications.New York:Wiley,1995,chapter 2.
  • 9Shao M and Nikias C L.Signal processing with fractional lower order moments:Stable processes and their applications.Proc.IEEE,1993,87(1):986-1010.
  • 10Arikan O,Gelge M,and Cetin A E,el al..Adaptive filtering approaches for non-Gaussian stable processes.IEEE ICASSP 95,Detroit,USA,May 1995,2:1400-1403.

共引文献32

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部