期刊文献+

Impact of vegetation succession on leaf-litter-soil C:N:P stoichiometry and their intrinsic relationship in the Ziwuling Area of China’s Loess Plateau 被引量:8

下载PDF
导出
摘要 Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期697-711,共15页 林业研究(英文版)
基金 financially supported by the External Cooperation Program of Chinese Academy of Sciences(Grant No.161461KYSB20170013) Special-Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(Grant No.A314021403-C2).
  • 相关文献

参考文献4

二级参考文献18

共引文献115

同被引文献216

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部