期刊文献+

一种实时多传感器跌倒检测系统 被引量:3

A Real-time Fall Detection System Based on Multi-sensors
下载PDF
导出
摘要 跌倒已逐渐成为一种危害老年人身体健康的严重事故,如何在跌倒前对跌倒作出预测具有重要意义。设计一种基于足底压力和惯性传感器的跌倒检测系统,系统位于鞋体外侧,同时设计一种三层BP神经网络作为检测算法,系统运行时采集传感数据并通过WiFi传给上位机,上位机对数据进行显示,特征处理后使用训练好的算法进行跌倒检测。实验结果表明,该系统对跌倒和日常活动(ADL)的准确度达99.7%,算法的敏感度和特异性分别为100%和99.3%,同时,检测系统的PIT值约为400ms。该系统在保证高准确率的同时,还实现了很高的PIT值,给跌倒后续处理保留了较长前置时间。 Falls have gradually become a serious accident endangering the health of the elderly.How to predict falls before they happen is of great significance.A fall detection system based on plantar pressure and inertial sensor is designed in this paper.The system is located on the outside of the shoe,and a detection algorithm based on three-layer BP neural network is designed.When the system is running,the sensor data is collected and transmitted to the upper computer via WIFI.The upper computer displays the data,and the trained algorithm is used for fall detection after feature processing.The experimental results show that the accuracy of the system for falls and daily activities(ADL)can reach 99.7%,the sensitivity and specificity of the algorithm are 100%and 99.3%,respectively.Meanwhile,the PIT value is about 400ms.the system not only ensures high accuracy,but also realizes extraordinarily high PIT value,which reserves a long lead time for subsequent treatment of falls.
作者 刘石雨 王多琎 LIU Shi-yu;WANG Duo-jin(Institute of Rehabilitation Engineering and Technology,University of Shanghai for Science and Technology;Shanghai Engineering Research Center of Assistive Devices;Key Laboratory of Neural-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs,Shanghai 200093,China)
出处 《软件导刊》 2021年第2期165-169,共5页 Software Guide
基金 上海市科技创新行动计划项目(19DZ2203600)。
关键词 跌倒检测 足底压力 加速度 角速度 BP神经网络 fall detection plantar pressure acceleration angular velocity BP neural network
  • 相关文献

参考文献6

二级参考文献73

  • 1秦晓华,段侪杰,袁克虹,申博.一种老年人移动健康监护系统的研究[J].中国医学物理学杂志,2011,28(1):2407-2410. 被引量:13
  • 2穆光宗,王志成,颜廷健,谷琳.中国老年人口的受教育水平[J].市场与人口分析,2005,11(3):60-67. 被引量:30
  • 3杜鹏,翟振武,陈卫.中国人口老龄化百年发展趋势[J].人口研究,2005,29(6):90-93. 被引量:290
  • 4孙丽,秦永元.捷联惯导系统姿态算法比较[J].中国惯性技术学报,2006,14(3):6-10. 被引量:48
  • 5M J Mathie, B G Celler, N H Lovell, et al. Classification of basic daily movements using a triaxial accelerometer[ J]. Medical and Biological Engineering and Computing, 2004,42 (5) :679- 687.
  • 6H Nait-Charif, S J McKenna. Activity summarization and fall detection in a supportive home environment[ A]. Proceedings of 17th International Conference on Pattern Recognition[ C ]. Cambridge,UK: IEEE CS Press,2004.323 - 326.
  • 7H Huo,W Shen, Y Xu, et al. The effect of human activities on 2.4 GHz radio propagation at home environment[A ]. Proceedings of 2nd IEEE International Conference on Broadband Network and Multimedia Technology [ C ]. Beijing, China: IEEE Press, 2009.95 - 99.
  • 8Robert Steele, Chris Secombe, Wayne Brookes. Using wireless sensor networks for aged care: the patient' s perspective[ A ]. Proceedings of Pervasive Health Conference and Workshops [ C ]. Innsbruck, Austria: IEEE Press, 2006.1 - 10.
  • 9B Ugur Toreyin, Yigithan Dedeoglu, A Enis Cetin. HMM based falling person detection using both audio and video [A ]. Proceedings of Computer Vision in Human-Computer Interaction (LNCS 3766)[C]. Beijing, China: Springer-Verlag,2005.211 - 220.
  • 10H Rashvand, V Salcedo, E Sanchez, et al. Ubiquitous wireless telemedicine [ J ]. IET Communications, 2008,2 ( 2 ) : 247 - 254.

共引文献96

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部