期刊文献+

A Fully Convolutional Neural Network-based Regression Approach for Effective Chemical Composition Analysis Using Near-infrared Spectroscopy in Cloud 被引量:5

下载PDF
导出
摘要 As one chemical composition,nicotine content has an important influence on the quality of tobacco leaves.Rapid and nondestructive quantitative analysis of nicotine is an important task in the tobacco industry.Near-infrared(NIR)spectroscopy as an effective chemical composition analysis technique has been widely used.In this paper,we propose a one-dimensional fully convolutional network(1D-FCN)model to quantitatively analyze the nicotine composition of tobacco leaves using NIR spectroscopy data in a cloud environment.This 1D-FCN model uses one-dimensional convolution layers to directly extract the complex features from sequential spectroscopy data.It consists of five convolutional layers and two full connection layers with the max-pooling layer replaced by a convolutional layer to avoid information loss.Cloud computing techniques are used to solve the increasing requests of large-size data analysis and implement data sharing and accessing.Experimental results show that the proposed 1D-FCN model can effectively extract the complex characteristics inside the spectrum and more accurately predict the nicotine volumes in tobacco leaves than other approaches.This research provides a deep learning foundation for quantitative analysis of NIR spectral data in the tobacco industry.
出处 《Journal of Artificial Intelligence and Technology》 2021年第1期74-82,共9页 人工智能技术学报(英文)
  • 相关文献

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部