期刊文献+

结合文本及用户资料数据的微博谣言检测 被引量:2

Microblogging rumor detection combined with text and user profiles
下载PDF
导出
摘要 社交平台谣言检测问题通常以源帖文本,回复文本为谣言检测的判断依据。此外,用户相关数据也利于提高谣言检测准确率。根据文本内容和回复内容呈现的序列特性,个人资料和微博统计数据多维度的无序性,提出基于自注意力的卷积神经网络及用户信誉特征谣言检测方法。该方法利用自注意力和卷积神经网络对源帖以及回复文本进行词级和句子级别的二级编码获取文本语义特征和谣言事件回帖的时序特征,并通过自注意力和最大池化结合用户个人信息及微博统计数据编码用户信誉特征进行谣言检测。在取自微博和推特的两个公开数据集上实验表明:1.结合自注意力的卷积神经网络序列编码优于单一的卷积神经网络;2.用户信誉特征能有效提高谣言检测结果准确率。 The rumor detection problem of social platforms is usually based on the source post text and reply text. In addition,user-related data also helps improve the accuracy of rumor detection. Based on the sequence characteristics of text content and reply content, the multi-dimensional disorder of personal data and microblog statistics, this paper pro-posed a self-attention convolutional neural network and user credit feature rumor detection method. The method adopts self-attention and convolutional neural networks to perform word-level and sentence-level coding on source post and reply texts to obtain text semantic features and temporal features of a rumor event. User credit features and microblog statistics are encoded by self-attention and max pooling through user profiles. Experiments are conducted on two public datasets from Weibo and Twitter, and the results demonstrates that: 1. Convolutional neural network sequence coding combined with self-attention is superior to a single convolutional neural network;2. The user credit feature can effectively improve the accuracy of rumor detection.
作者 柳先觉 徐义春 董方敏 Liu Xianjue;Xu Yichun;Dong Fangmin(College of Computer and Inform ation,China Three Gorges University,Yichang 443002,China)
出处 《信息通信》 2020年第12期39-43,共5页 Information & Communications
关键词 自注意力机制 卷积神经网络 最大池化 用户资料 谣言检测 self-attention mechanism convolutional neural network max pooling user profiles rumor detection
  • 相关文献

参考文献2

二级参考文献16

  • 1奥尔波特.谣言心理学[M].沈阳:辽宁教育出版社,2003.
  • 2卡普费雷.谣言:世界最古老的传媒[M].郑若麟,译.上海:上海人民出版社,2008.
  • 3拉扎斯菲尔德.人民的选择[M].唐茜,译.北京:中国人民大学出版社,2012:139-150.
  • 4CNNIC.中国互联网络发展状况统计报告(2015年1月)[R].北京:中国互联网信息中心,2015.
  • 5Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it: identi- fying misinformation in microblogs [ C ]//Proc of Conference on Em- pirical Methods in Natural Language Processing. [ S. t. ] : Association for Computational Linguistics, 2011: 1589-1599.
  • 6Castillo C, Mendoza M, Poblete B. Information credibility on twitter [ C]//Proc of the 20th International Conference on World Wide Web. New York:ACM Press, 2011: 675-684.
  • 7Takahashi T, Igata N. Rumor detection on twitter [ C ]//Proc of the 13th Intet~aational Symposium on Advanced Intelligent Systems, and the Joint 6th International Conference on Soft Computing and Intelli- gent Systems. [ S. 1. ] :IEEE Press, 2012: 452-457.
  • 8Yang Fan, Liu Yang, Yu Xiaohui, et al. Automatic detection of ru- mor on Sina Weibo[ C]//Proc of ACM SIGKDD Workshop on Mining Data Semantics. New York:ACM Press, 2012: 13.
  • 9Sun Shengyun, Liu Hongyan, He Jun, et al. Detecting event rumors on Sina Weibo automatically [ M ]//Web Technologies and Applica- tions. Berlin:Springer, 2013.. 120-131.
  • 10Mikolov T, Chen Kai, Con'ado G, et al. Efficient estimation of word representations in vector space [ C ]//Proc of International Conference on Learning Representations. 2013.

共引文献24

同被引文献28

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部