期刊文献+

基于图卷积神经网络的多视角聚类 被引量:1

Multi-view Clustering via Graph Convolutional Neural Network
下载PDF
导出
摘要 针对多视角数据间互补与一致特性难以刻画问题,提出一种基于图卷积神经网络的多视角聚类方法。通过对样本不同视角间相同邻接子图基于图卷积神经网络学习到的表达进行约束,有效挖掘了多视角数据间的一致特性。通过共享图卷积神经网络参数、学习不同视角完整邻接图嵌入表达并串接得到多视角表达,有效挖掘了多视角数据间的互补特性。对上述多视角表达增加相对熵约束,使得最终学习到的多视角表达得以提升并符合聚类特性。在五个数据集上均取得了最好的聚类效果,说明所提出的基于图卷积神经网络的聚类方法可以有效挖掘视角间互补与一致特性并提升聚类性能。 Aiming at discovering complementarity and consistency among multi-view data,a multi-view clustering based on Graph Convolutional neural Network(GCN)is proposed.By adding pairwise constraints on embeddings learned via the GCN on common sub-graphs of multiple views,consistency can be effectively measured.Through sharing the parameters of GCN,generating embeddings of each view based on their complete graphs,and concatenating those embeddings for multi-view embedding,complementarity will be explored.Besides,a Kullback-Leibler(KL)divergence based objective is designed to constrain the above embedding,leading to clustering oriented embedding learned.Experiments are conducted on five widely used datasets,achieving best clustering results,which clarifies the effectiveness of the method for exploring complementarity and consistency among multi-view data.
作者 李勇振 廖湖声 LI Yongzhen;LIAO Husheng(Information Department,Beijing University of Technology,Beijing 100124,China;School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第5期115-122,共8页 Computer Engineering and Applications
基金 北京建筑大学优秀主讲教师培育计划(21082717046) 北京建筑大学基金(00331615029)。
关键词 多视角聚类 图卷积神经网络 相对熵 multi-view clustering graph convolutional neural network Kullback-Leibler divergence
  • 相关文献

参考文献2

二级参考文献100

  • 1Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 2Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 3Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 4Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 5Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 6Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 7Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 8Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.
  • 9Boult T E, Brown L G. Factorization-based segmentation of motions. In: Proceedings of the 1991 IEEE Workshop on Visual Motion. Princeton, NJ: IEEE, 1991. 179-186.
  • 10Wu Y, Zhang Z Y, Huang T S, Lin J Y. Multibody grouping via orthogonal subspace decomposition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA: IEEE, 2001. 2: 252-257.

共引文献118

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部