期刊文献+

一种优化FCN的视频异常行为检测定位方法 被引量:8

A video abnormal behavior detection and location method of optimized FCN
下载PDF
导出
摘要 在视频异常行为检测过程中,为了提取出可分辨性更好的特征,同时兼顾运行速度,提出一种基于优化的全卷积网络(full convolution network,FCN)的异常行为检测与定位方法。对FCN进行优化,使用卷积神经网络(convolution neural network,CNN)的数个初始卷积层和一个额外卷积层,生成同时描述运动和形状的区域向量集;使用高斯分类器对特征向量集进行验证,将存在显著差异的分块标记为异常,将低拟合置信度的可疑区域输入到稀疏自动编码器中;对异常行为进行定位,并将异常行为的位置传回FCN。所提方法在UCSD和Subway这2个公开数据集上进行验证分析。实验结果表明,所提方法在受试者操作特征(receiver operation characteristic,ROC)曲线、等错误率(equal error rate,EER)和曲线下面积(area under curve,AUC)性能方面表现优秀,且运行速度达到60 frame/s,实时性较为优秀。 In the process of video anomaly detection,in order to extract better distinguishable features and take into account the running speed,this paper proposes an anomaly detection and location method based on optimized full convolution network(FCN).Firstly,the FCN is optimized by using several initial convolution layers and an additional convolution layer of convolution neural network(CNN)to generate a set of regional vectors describing both motion and shape.Then,the set of eigenvectors is validated by using Gauss classifier,and the blocks with significant differences are marked as anomalies,and the suspicious regions with low fitting confidence are input to the sparse automatic encoder.Finally,the abnormal behavior is located and the location of the abnormal behavior is returned to FCN.The proposed method is validated and analyzed on two open data sets,UCSD and Subway.The experimental results show that the proposed method performs well in receiver operation characteristic(ROC)curve,equal error rate(EER)and area under curve(AUC).In addition,the proposed method has achieved a processing speed of 60 fps,indicating an excellent real time capability.
作者 陈纪铭 陈利平 CHEN Jiming;CHEN Liping(School of Computer and Information Science,Hunan Institute of Technology,Hengyang 421002,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2021年第1期126-134,共9页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 湖南省自然科学基金(13JJ9027) 湖南省教育科学“十三五”规划课题(XJK18CXX013)阶段性成果 湖南工学院科学研究项目(2018HY016)。
关键词 异常行为检测 全卷积网络 定位 高斯分类器 稀疏自动编码器 anomaly detection full convolution network location gauss classifier sparse automatic encoder
  • 相关文献

参考文献9

二级参考文献33

  • 1李石坚,徐从富,吴朝晖,潘云鹤.面向目标跟踪的传感器网络布局优化及保护策略[J].电子学报,2006,34(1):71-76. 被引量:25
  • 2Boulanouar I, Lohier S, Rachedi A, et al. CTA: a Collaborative Tracking Algorithm in Wireless Sensor Networks[ C]//Proc. of the 2013 lnt' 1 Conf. on Computing, Networking and Communications.2013:529-534.
  • 3Wang Z, Bulut E, Szymanski B K. Distributed Target Tracking with Directional Binary Sensor Networks [ C ]//Global Telecommunica- tions Conference,2009. GLOBECOM 2009. IEEE. IEEE,2009. 1-6.
  • 4Liu L, Ma HD, Zhang X. On Directional k-Coverage Analysis of Randomly Deployed Camera Sensor Networks [ C]//Proe of the IEEE ICC 2008. New York : IEEE Press,2008:2707-2711.
  • 5Wu Y A, Yin J P, Li M, et al. Efficient Algorithms for Probabilistic k-Coverage in Directional Sensor Networks[ C]//Proc of the Int' I Conf on Intelligent Sensors, Sensor Networks and Information Processing. 2008:587-592.
  • 6Fuseo G, Gupta H. Selection and Orientation of Directional Sensors for Coverage Maximization [ C ]//Proe of the 6th Annual IEEE Conf on Sensor, Mesh and Ad Hoe Communications and Networks. New York : IEEE Press ,2009 : 1-9.
  • 7Fusco G, Gupta H. Placement and Orientation of Rotating Directional Sensors [C ]//Proc. of the 7th Annual IEEE Communications Society Conf on Sensor Mesh and Ad Hoe Com- munications and Networks. New York :IEEE Press,2010:1-9.
  • 8李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15. 被引量:442
  • 9袁霄,王丽萍.基于MeanShift算法的运动人体跟踪[J].计算机工程与科学,2008,30(4):46-49. 被引量:27
  • 10马林兵,张新长.面向全时段查询的移动对象时空数据模型研究[J].测绘学报,2008,37(2):207-211. 被引量:9

共引文献73

同被引文献81

引证文献8

二级引证文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部