期刊文献+

基于CNN的地震前兆台网观测数据异常图像识别方法 被引量:6

Abnormal Image Recognition from Observation Data of Earthquake Precursor Networks Based on CNN
下载PDF
导出
摘要 地震前兆台网观测数据异常图像识别方法一直是地震监测预报人员研究的重要课题。为提高异常图像识别的工作效率,充分利用已有的异常图像识别经验知识,开展基于卷积神经网络(CNN)的快速异常识别方法探索性研究。结果表明:基于CNN的异常图像识别方法准确率较高,实现了异常图像的快速识别。整个台网的异常图像丰富多样,影响较多。由于特定观测手段下,特定影响因素的训练样本少,该方法应用于整个台网的异常图像的自动识别,还需要进一步开展研究工作。 How to recognize anomaly images from the observation data of earthquake precursory networks is always an important topic for earthquake monitoring and forecasting personnel.In order to improve the work efficiency of abnormal image recognition and make full use of the existing experience and knowledge of abnormal image recognition,an exploratory research on the rapid CNN-based identification of anomaly images was carried out.The results show that the CNN-based abnormal image recognition method proposed in this paper has high accuracy,and can realize the rapid recognition of abnormal images.Due to the lack of training samples with specific observation means and specific influencing factors,further research is needed to apply this method to automatic recognition of abnormal images in the whole network.
作者 王军 刘春国 樊俊屹 WANG Jun;LIU Chunguo;FAN Junyi(China Earthquake Networks Center, Beijing 100045, China)
出处 《地震工程学报》 CSCD 北大核心 2021年第1期28-32,49,共6页 China Earthquake Engineering Journal
基金 国家自然科学基金面上项目(41372349) 中国地震局专项“全国地球物理台网数据跟踪分析与产出”。
关键词 卷积神经网络 地震前兆台网 异常图像 自动识别 convolutional neural network earthquake precursor observation networks abnormal image automatic identification
  • 相关文献

参考文献8

二级参考文献45

  • 1阳小珊,邱全伟,郑良,刘智朋,朱立谷,罗洪元.NAS存储系统性能测评方法研究[J].计算机研究与发展,2012,49(S1):346-351. 被引量:9
  • 2黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 3姚运生,李井冈,李胜乐.提高地震前兆数据库存取效率的新表结构[J].大地测量与地球动力学,2006,26(3):122-126. 被引量:4
  • 4吴叔坤,林伟,吕金水,康英,黄文辉,吴永权.IP/VPN准实时传输地震波形数据的质量分析和效益评价[J].华南地震,2006,26(2):98-105. 被引量:4
  • 5刘瑞丰,蔡晋安,彭克银,单新建,代光辉,田力,庞丽娜,张爱武.地震科学数据共享工程[J].地震,2007,27(2):9-16. 被引量:28
  • 6PAVLIDIS T, HOROWITZ S L. Segmentation of plane curves [ J ]. IEEE Trans on Computers,1974,23(8) :860-870.
  • 7KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[ C ]//Proc of the I st IEEE International Conference on Data Mining. Washington DC: IEEE Computer Society, 2001 : 289- 296.
  • 8KEOGH E. Fast similarity search in the presence of longitudinal scaling in time series databases[ C]//Proc of the 9th IEEE International Conference on Tools with Artificial Intelligence. Washington DC : IEEE Computer Society, 1997:578.
  • 9KNORR E M, NG R T. Algorithms for mining distance-based outliers in large datasets[ C ]//Proc of the 24th International Conference on Very Large Data-Bases. San Francisco, CA: Morgon Kaufmann Publishers Inc, 1998:392-403.
  • 10黄厚宽.数据挖掘可视化模型及其应用研究[D].北京:北京交通大学,2009.

共引文献62

同被引文献65

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部