期刊文献+

自动确定聚类中心的比较密度峰值聚类算法 被引量:6

Comparative density peaks clustering algorithm with automatic determination of clustering center
下载PDF
导出
摘要 针对密度峰值聚类算法(DPC)不能自动确定聚类中心,并且聚类中心点与非聚类中心点在决策图上的显示不够明显的问题,设计了一种自动确定聚类中心的比较密度峰值聚类算法(ACPC)。该算法首先利用距离的比较量来代替原距离参数,使潜在的聚类中心在决策图中更加突出;然后通过二维区间估计方法进行对聚类中心的自动选取,从而实现聚类过程的自动化。仿真实验结果表明,在4个合成数据集上ACPC取得了更好的聚类效果;而在真实数据集上的Accuracy指标对比表明,在Iris数据集上,ACPC聚类结果可达到94%,与传统的DPC算法相比提高了27.3%,ACPC解决了交互式选取聚类中心的问题。 In order to solve the problem that the clustering centers cannot be determined automatically by Density Peaks Clustering(DPC)algorithm,and the clustering center points and the non-clustering center points are not obvious enough in the decision graph,Comparative density Peaks Clustering algorithm with Automatic determination of clustering center(ACPC)was designed.Firstly,the distance parameter was replaced by the distance comparison quantity,so that the potential clustering centers were more obvious in the decision graph.Then,the 2D interval estimation method was used to perform the automatic selection of clustering centers,so as to realize the automation of clustering process.Experimental results show that the ACPC algorithm has better clustering effect on four synthetic datasets;and the comparison of the Accuracy indicator on real datasets shows that on the dataset Iris,the clustering accuracy of ACPC can reach 94%,which is 27.3%higher than that of the traditional DPC algorithm,and the problem of selecting clustering centers interactively is solved by ACPC.
作者 郭佳 韩李涛 孙宪龙 周丽娟 GUO Jia;HAN Litao;SUN Xianlong;ZHOU Lijuan(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao Shandong 266590,China;Key Laboratory of Geomatics and Digital Technology of Shandong Province(Shandong University of Science and Technology),Qingdao Shandong 266590,China)
出处 《计算机应用》 CSCD 北大核心 2021年第3期738-744,共7页 journal of Computer Applications
基金 山东省自然科学基金资助项目(ZR2017MD003)。
关键词 聚类分析 密度聚类 密度峰值 聚类中心 统计分析 clustering analysis density clustering density peak clustering center statistical analysis
  • 相关文献

参考文献10

二级参考文献38

共引文献115

同被引文献57

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部