期刊文献+

结合自注意力的BiLSTM-CRF的电子病历命名实体识别 被引量:21

ELECTRONIC MEDICAL RECORD NAMED ENTITY RECOGNITION COMBINED WITH SELF-ATTENTION BILSTM-CRF
下载PDF
导出
摘要 为弥补现有方法不能很好捕获电子病历实体之间的长距离依赖关系的缺陷,提出一种结合自注意力的BiLSTM-CRF的命名实体识别方法。将输入文本转成神经网络可识别的数值形式;经过BiLSTM网络并结合自注意力计算得到每个字的输出特征向量;通过CRF层找到句子最适合的输出标签序列,从而确定命名实体。采用CCKS2018数据集进行实验,结果表明,改进的命名实体识别方法对电子病历具有一定的适应性,且与现有的方法相比,测试集的准确率提高了6.50~9.25个百分点。 To compensate for the shortcomings of the long-distance dependence between electronic medical record entities that are not well captured by existing methods,this paper proposes named entity identification of BiLSTM-CRF combined with self-attention.The input text was converted into a recognizable numerical form of the neural network;the output feature vector of each word was calculated through the BiLSTM network and combined with self-attention;the CRF layer was used to find the most suitable output tag sequence of the sentence,thereby determining the named entity.The experiments were carried out using the CCKS2018 dataset.The experimental results show that the improved named entity recognition method has certain adaptability to electronic medical records.Compared with the existing methods,the accuracy of the test set is improved by 6.5%~9.25%.
作者 曾青霞 熊旺平 杜建强 聂斌 郭荣传 Zeng Qingxia;Xiong Wangping;Du Jianqiang;Nie Bin;Guo Rongchuan(Qihuang Medical College,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,Jiangxi,China;Computer School,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,Jiangxi,China)
出处 《计算机应用与软件》 北大核心 2021年第3期159-162,242,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61762051,61562045) 江西省科技厅重点研发计划项目(20171ACE50021,20171BBG70108) 江西省教育厅科学技术研究项目(GJJ170747)。
关键词 电子病历 命名实体识别 自注意力 BiLSTM-CRF Electronic medical record Named entity recongition Self-attention BiLSTM-CRF
  • 相关文献

参考文献7

二级参考文献31

  • 1张晓艳,王挺,陈火旺.命名实体识别研究[J].计算机科学,2005,32(4):44-48. 被引量:66
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:159
  • 3周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 4命名实体评测大纲[C/OL].863命名实体识别评测组,2004.http://www.863data.com.cn.
  • 5Della Pietra S,Della Pietra V,Mercer R L,et al.Adaptive language modeling using minimum discriminant estimation[C]//A eoustics,Speech,and Signal Processing,ICASSP-92.USA,1992:633-636.
  • 6Chen A,Peng F,Shan R,et al.Chinese named entity recognition with conditional probabilistic models[C]// Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing.Australia,2006:173-176.
  • 7Ritter A,Clark S,Mausam,et al.Named entity recognition in tweets:an experimental study[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.USA,2011:1524-1534.
  • 8Ek T,Kirkegaard C,Jonsson H,et al.Named entity recognition for short text messages[J].Procedia-Social and Behavioral Sciences,2011,27:178-187.
  • 9Lafferty J,Mccallum A,Pereira F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 8th International Conference of Machine Learning.USA,2001:282-289.
  • 10赵军.命名实体识别、排歧和跨语言关联[J].中文信息学报,2009,23(2):3-17. 被引量:51

共引文献340

同被引文献221

引证文献21

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部