期刊文献+

求解带序相关设置时间的绿色流水线调度问题

Green pipeline scheduling problem with sequence correlation setting time
下载PDF
导出
摘要 文中提出一种基于分布估计算法(Estimation of Distribution Algorithm,EDA)的多目标优化算法,用于求解带序相关设置时间的绿色流水线调度问题,优化目标为最小化最大完工时间和总电价。首先,初始解均通过随机产生的方式以保持种群的多样性和分散性;其次,统计非劣解集中优良解的信息并通过概率矩阵对其进行学习并保留;同时,设计一种自适应学习速率来控制优良解信息在整个算法搜索过程中的引导作用;然后,构建自学习的局部搜索策略对非劣解进行深度探索;最后,仿真实验和算法对比表明,文中所提方法能够有效求解此问题,并具有良好稳定性。 A multi-objective optimization algorithm is proposed based on the Estimation of Distribution Algorithm(EDA),to solve the green flow shop scheduling problem with sequence dependent setup time,to minimize the maximum completion time and the total electricity price to reach the optimization goal.Firstly,the initial solutions are randomly generated to maintain the diversity and dispersion of the population.Secondly,the information of the good solutions in the non-inferior solution set is learned and retained through the probability matrix;At the same time,an adaptive learning rate is designed to control the good solution information plays a guiding role in the entire algorithm search process.Then,a self-learning local search strategy is constructed to explore non-inferior solutions in depth.Finally,the effectiveness of the proposed method is verified through simulation experiments and algorithm comparison.
作者 董钰明 胡蓉 姚友杰 DONG Yu-ming;HU Rong;YAO You-jie(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Kunming Ship Design&Research Institute Co.,Ltd.,Kunming 650051,China)
出处 《信息技术》 2021年第2期1-6,共6页 Information Technology
基金 国家自然科学基金资助项目(51665025,61963022)。
关键词 带序相关设置时间 流水车间调度问题 分布估计算法 分时电价 sequence dependent setup times flow shop scheduling problem Estimation of Distribution Algorithm(EDA) time of use(TOU)
  • 相关文献

参考文献5

二级参考文献72

  • 1王凌,张亮.有限缓冲区流水线调度的多搜索模式遗传算法[J].计算机集成制造系统,2005,11(7):1041-1046. 被引量:13
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 3THORNTON H W, HUNSUCKER J L. A new heuristic forminimal makespan in flow shops with multiple processors and no intermediate storage[J]. European Journal of Operational Research, 2004,152(1) ..96-114.
  • 4PAPADIMITRIOU C H, KANELLAKIS P C. Flow shop scheduling with limited temporary storagel-J3. Journal of As- sociation Computing Machine, 1980,27(3) :533-549.
  • 5LEISTEN R. Flowshop sequencing problems with limited buffer storage[:J]. International Journal of Production Re- search, 1990,28 ( 11 ) :2085-2100.
  • 6NAWAZ M, ENSCORE E, HAM I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing probleml-J:. Ome- ga,1983,11(1) :91-95.
  • 7NOWICKI E. The permutation flow shop with buffers..a tabu search approach:J:. European Journal of Operational Re- search, 1999,116(1) :205-219.
  • 8BRUCKER P, HEITMAN N S, H URINK J. Flow-shop problems with intermediate buffers[J]. OR Spectrum, 2003, 25(4) :549-574.
  • 9WANG L, ZHANG L, ZHENG D Z. An effective hybrid ge- netic algorithm for flow shop scheduling with limited buffers [J ]. Computers : Operations Research, 2006, 33 (10) : 2960-2971.
  • 10LIU B, WANG L, JIN Y H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers[J]. Computers g: Operations Research,2008,35(9):2791-2806.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部