期刊文献+

一种红外波段多波长吸收器优化设计 被引量:1

Optimum design of a multi-wavelength absorber in infrared band
原文传递
导出
摘要 本文设计了一种石墨烯/交替光栅/铝(Al)底板结构红外波段电磁超材料多波长吸收器。利用时域有限差分法(FDTD)数值模拟了石墨烯层厚度和光栅结构参数对吸收光谱的影响规律。研究结果证明,基于FP腔共振和相消干涉形成的吸收光谱对石墨烯层厚度和光栅高度较敏感,即随着石墨烯层厚度增大或光栅高度降低,左边频迅速蓝移,伴随各干涉峰峰位波长小幅右飘,吸收率大幅提升;而随着光栅周期缩小,左边频吸收峰呈现右移趋势,但各干涉峰峰位几乎无变化。与此同时各干涉峰峰位波长具有随环境折射率增大线性红移的特性,故而可用于折射率或液体、气体浓度的高灵敏度感测。 An infrared electromagnetic metamaterial multichannel absorber is designed based on graphene,alternating grating and Al substrate.The Finite-Difference Time-Domain(FDTD)method is used to simulate the influence of the thickness of the graphene layer and the grating structure parameters on the absorption spectrum,and then the optimal design structure is obtained.The results show that the absorption spectra of FP cavity resonance and magnetron resonance are sensitive to the thickness of the graphene layer and the height of the grating.As the thickness of graphene increases or the height of the grating decreases,the left frequency shifts to the left quickly,and the interference peaks drift slightly to the right,with the absorption rate greatly increasing.When the grating period decreases or the duty ratio increases,the left frequency shifts to the right obviously,while the interference peaks are almost unchanged.At the same time,the peak positions of the interference peaks shift linearly to the right as the refractive index of the environment increases,so it can be used for high-sensitivity sensing of refractive index or liquid and gas concentration.
作者 赵洪霞 ZHAO Hong-xia(Electronic and Information Engineering College,Ningbo University of Technology,ningbo,Zhejiang 315016,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2021年第2期116-121,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61605097) 浙江省基础公益研究计划项目(LGC20F050001,LGC19F050001)资助项目。
关键词 吸收器 多波长 共振波长 吸收率 absorber multi-wavelength resonance wavelength absorptivity
  • 相关文献

参考文献5

二级参考文献40

  • 1刘亚红,方石磊,顾帅,赵晓鹏.2013物理学报.62134102.
  • 2Pendry J B.2000 Phys. Rev. Lett. 85 3966.
  • 3Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R.2006 Science 314 977.
  • 4Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor J, Dalvit D AR, Chen H T.2013 Science 340 1304.
  • 5Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.2008 Phys. Rev. Lett. 100.207402.
  • 6Tao H., Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D.2010 J. Phys. D. Appl. Phys. 43 225102.
  • 7Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M, Cummer S A.2008 Appl. Phys. Lett. 93 191110.
  • 8Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T.2012.Opt. Lett. 37 154.
  • 9Chen H T.2012.Opt. Express.20 7165.
  • 10Liu X, Starr T, Starr A F, Padilla W J.2010 Phys. Rev. Lett. 104.207403.

共引文献82

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部