摘要
多元时间序列的因果关系分析是数据挖掘领域的研究热点.时间序列数据包含着与时间动态有关的、未知的、有价值的信息,因此若能挖掘出这些知识进而对时间序列未来趋势进行预测或干预,具有重要的现实意义.为此,本文综述了多元时间序列因果关系分析的研究进展、应用与展望.首先,本文归纳了主要的因果分析方法,包括Granger因果关系分析、基于信息理论的因果分析和基于状态空间的因果分析;然后,总结了不同方法的优缺点、适用范围和发展方向,并概述了其在不同领域的典型应用;最后,讨论了多元时间序列因果分析方法待解决的问题和未来研究趋势.
The causality analysis of multivariate time series is a research hotspot in data mining.Time series data contains unknown,valuable information related to temporal dynamics.Therefore,it is of great practical significance to be able to mine these knowledge and then predict or intervene the future trend of time series.For this reason,this paper reviews the research progress,application and prospects of causality analysis of multivariate time series.Firstly,this paper summarizes the main causality analysis methods,including Granger causality analysis,causality analysis based on information theory and causality analysis based on state space.Then,we summarize the advantages and disadvantages,scope of application and development directions of different methods,and outline their typical applications in different fields.Finally,the problems to be solved and future research trends of the causality analysis methods of multivariate time series are discussed.
作者
任伟杰
韩敏
REN Wei-Jie;HAN Min(Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116023;Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian University of Technology,Dalian 116023)
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2021年第1期64-78,共15页
Acta Automatica Sinica
基金
国家自然科学基金(61773087)
中央高校基本科研业务费(DUT18 RC(6)005)资助。