期刊文献+

多元时间序列因果关系分析研究综述 被引量:17

Survey on Causality Analysis of Multivariate Time Series
下载PDF
导出
摘要 多元时间序列的因果关系分析是数据挖掘领域的研究热点.时间序列数据包含着与时间动态有关的、未知的、有价值的信息,因此若能挖掘出这些知识进而对时间序列未来趋势进行预测或干预,具有重要的现实意义.为此,本文综述了多元时间序列因果关系分析的研究进展、应用与展望.首先,本文归纳了主要的因果分析方法,包括Granger因果关系分析、基于信息理论的因果分析和基于状态空间的因果分析;然后,总结了不同方法的优缺点、适用范围和发展方向,并概述了其在不同领域的典型应用;最后,讨论了多元时间序列因果分析方法待解决的问题和未来研究趋势. The causality analysis of multivariate time series is a research hotspot in data mining.Time series data contains unknown,valuable information related to temporal dynamics.Therefore,it is of great practical significance to be able to mine these knowledge and then predict or intervene the future trend of time series.For this reason,this paper reviews the research progress,application and prospects of causality analysis of multivariate time series.Firstly,this paper summarizes the main causality analysis methods,including Granger causality analysis,causality analysis based on information theory and causality analysis based on state space.Then,we summarize the advantages and disadvantages,scope of application and development directions of different methods,and outline their typical applications in different fields.Finally,the problems to be solved and future research trends of the causality analysis methods of multivariate time series are discussed.
作者 任伟杰 韩敏 REN Wei-Jie;HAN Min(Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116023;Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian University of Technology,Dalian 116023)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第1期64-78,共15页 Acta Automatica Sinica
基金 国家自然科学基金(61773087) 中央高校基本科研业务费(DUT18 RC(6)005)资助。
关键词 多元时间序列 GRANGER 因果分析 转移熵 状态空间 Multivariate time series Granger causality analysis transfer entropy state space
  • 相关文献

参考文献4

二级参考文献116

  • 1吴新根,吕维雪.一种基于信息熵的神经网络规则表示[J].计算机工程,1996,22(5):46-51. 被引量:2
  • 2康玲,王乘,姜铁兵.Volterra神经网络水文模型及应用研究[J].水力发电学报,2006,25(5):22-26. 被引量:9
  • 3甘俊英,李春芝.基于小波变换、二维主元分析与独立元分析的人脸识别方法[J].模式识别与人工智能,2007,20(3):377-381. 被引量:5
  • 4Xiao Z L, Jing X J, Cheng L. Parameterized convergence bounds for Volterra series expansion of NARX models. IEEE Transactions on Signal Processing, 2013, 61(20): 5026-5038.
  • 5Asyali M, Alc M. Obtaining Volterra kernels from neural networks. In: Proceedings of World Congress on Medical Physics and Biomedical Engineering 2006, IFMBE Proceedings. Berlin: Springer Berlin Heidelberg, 2007. 11-15.
  • 6Silveira D D, Gilabert P L, dos Santos A B, Gadringer M. Analysis of variations of volterra series models for RF power amplifiers. IEEE Microwave and Wireless Components Letters, 2013, 23(8): 442-444.
  • 7Ghasemi M, Tavassoli K M, Babolian E. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. Applied Mathematics and Computation, 2007, 188(1): 446-449.
  • 8Meng X Z, Chen L S. Permanence and global stability in an impulsive Lotka-Volterra n-species competitive system with both discrete delays and continuous delays. International Journal of Biomathematics, 2008, 1(2): 179-196.
  • 9Despotovic V, Goertz N, Peric Z. Nonlinear long-term prediction of speech based on truncated Volterra series. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(3): 1069-1073.
  • 10Chen F D. Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems. Applied Mathematics and Computation, 2006, 182(1): 3-12.

共引文献131

同被引文献146

引证文献17

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部