期刊文献+

基于掌握速度的知识追踪模型 被引量:14

Knowledge Tracing Model Based on Mastery Speed
下载PDF
导出
摘要 知识追踪(Knowledge Tracing,KT)是教育数据挖掘领域的研究热点。KT能够自动发现学生的薄弱知识点,向学生推荐最佳的学习路径和练习题。针对现有的KT模型只适用于对单个知识点建模并没有考虑学生掌握知识点快慢的问题。提出了一种基于掌握速度的知识追踪模型(Mastery Speed Knowledge Tracing,MSKT),MSKT采用了记忆增强神经网络(Memory Augmented Neural Network,MANN)的思想和动态键值记忆网络模型(Dynamic Key-Value Memory Networks,DKVMN)的优点,并且在计算删除向量和增加向量时,使用了当前的记忆内容。通过对比实验验证了MSKT模型的有效性和优越性,并且可以自动地发现相似练习题。 Knowledge Tracking(KT)model is a hot topic in the field of educational data mining.KT can find student’s weak knowledge points and recommend the best learning path and exercises to students.The existing KT model is only applicable to the modeling of a single knowledge point and does not consider the problem of students’mastery speed.Mastery Speed Knowledge Tracing(MSKT)model is proposed.MSKT borrows from the idea of Memory Augmented Neural Network(MANN)and the advantages of Dynamic Key-Value Memory Network model(DKVMN),and uses the current memory contents when calculating delete vectors and add vectors.Experiments show the effectiveness and superiority of MSKT model,and similar exercises can be found automatically.
作者 宗晓萍 陶泽泽 ZONG Xiaoping;TAO Zeze(College of Electronic Information Engineering,Hebei University,Baoding,Hebei 071002,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第6期117-123,共7页 Computer Engineering and Applications
基金 河北省高等教育教学改革研究与实践(2016GJJG016)。
关键词 教育数据挖掘 知识追踪 深度学习 个性化推荐 记忆增强神经网络 educational data mining knowledge tracing deep learning personalized recommendation Memory Augmented Neural Network
  • 相关文献

参考文献3

二级参考文献58

  • 1Freund Y, Iyer R, Schapire R E, et al. An Efficient Boosting Al-gorithm for Combining Preferences//Proc of the International Con-ference on Machine Learning. Madison, USA, 1998:170-178.
  • 2Herschtal A, Raskutti B. Optimizing Area under the ROC Curve Using Gradient Descent//Proc of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:49-56.
  • 3Rakotomamonjy A. Optimizing AUC with Support Vector Machine (SVM) // Proc of the European Conference on Artificial Intelli-gence Workshop on ROC Analysis and Artificial Intelligence. Valen-cia, Spain, 2004:71-80.
  • 4Rakotomamonjy A. Quadratic Programming fur AUC Optimization // Proc of the 2nd International Conference on Modelling, Computa-tion and Optimization in Information Systems and Management Sci-ences. Metz, France, 2004:603-610.
  • 5Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters, 2006, 27(8) : 861-874.
  • 6Rosset S. Model Selection via the AUC//Proc of the 21st Interna-tional Conference on Machine Learning. Banff, Canada, 2004:89-97.
  • 7Wu S, Flach P. A Scored AUC Metric for Classifier Evaluation and Selection// Proc of the ICML Workshop on ROC Analysis in Ma-chine Learning. Bonn, Germany, 2005 : 247-262.
  • 8Hand D J, Till R J. A Simple Generalization of the Area under the ROC Curve for Multiple-Class Classification Problems. Machine Learning, 2001, 45(2): 171-186.
  • 9Calders T, Jaroszewicz S. Efficient AUC Optimization for Classifi-cation//Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. Warsaw, Poland, 2007:42-53.
  • 10Burges C, Shaked T, Renshaw E, et al. Learning to Rank Using Gradient Descent//Proc of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005:89-96.

共引文献86

同被引文献47

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部