期刊文献+

基于空间自适应全变分的图像配准

Image Registration Based on Spatial Adaptive Total Variation
下载PDF
导出
摘要 通过引入空间自适应正则化参数,建立了离散的空间自适应全变分配准模型,并结合一阶泰勒展开式给出了有效的不动点求解方法.实验结果表明,由空间自适应全变分配准模型得到的图像的质量比全变分配准模型的更好,迭代时间更短. A discrete spatially adaptive total variation image registration model is established by introducing spatial adaptive regularization parameters,and an effective fixed point method is given by combining the first-order Taylor expansion.Experimental results show that the image obtained from the spatial adaptive total variation registration model has better quality and requires less iterative time than the total variation registration model.
作者 张群艺 杨奋林 ZHANG Qunyi;YANG Fenlin(School of Mathematics and Statistics, Jishou University, Jishou 416000, Hunan China)
出处 《吉首大学学报(自然科学版)》 CAS 2020年第5期37-40,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11501243) 湘西自治州科技计划项目(2018SF5021)。
关键词 图像配准 空间自适应 正则化参数 不动点方法 image registration spatially adaptive regularization parameter fixed point method
  • 相关文献

参考文献1

二级参考文献8

  • 1RUDIN L,OSHER S,FATEMI E.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physical Review D,1992,60(1-4):259-268.
  • 2FANG Faming LI Fang,ZHANG Guixu,et al.A Variational Method for Multisource Remote-Sensing Image Fusion[J].International Journal of Remote Sensing,2013,34(7):2 470-2 486.
  • 3CHAMBOLLE A,LIONS P L.Image Recovery Via Total Variation Minimization and Related Problems[J].Numerische Mathematic,1997,76(2):167-188.
  • 4MARQUINA A,OSHER S.Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal[J].SIAM Journal on Scientific Computing,2000,22(2):387-405.
  • 5LYSAKER M,OSHER S,TAI Xuecheng.Noise Removal Using Smoothed Normals and Surface Fitting[J].IEEE Transactions on Image Processing,2004,13(10):1 345-1 357.
  • 6OSHER S,BURGER M,GOLDFARB D,et al.An Iterative Regularization Method for Total Variation-Based Image Restoration[J].SIAM Journal on Multiscale Modeling and Simulation,2005,4(2):460-489.
  • 7SAVAGE J,CHEN K.On Multigrids for Solving a Class of Improved Total Variation Based Staircasing Reduction Models[J].Mathematics and Visualization,2006,82:69-94.
  • 8TIKHONOV A N,ARSENIN V Y.Solutions of Ill-Posed Problems[M].Washington D C:Wiston and Sons,1977.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部