期刊文献+

带有输出约束的柔性关节机械臂预设性能自适应控制 被引量:30

Prescribed performance adaptive control of flexible-joint manipulators with output constraints
原文传递
导出
摘要 针对带有输出约束和模型不确定的柔性关节机械臂系统,提出一种基于时变障碍李雅普诺夫函数的预设性能自适应控制方法.通过构造指数衰减的时变约束边界,提出时变正切型障碍李雅普诺夫函数,能够同时适用于约束与非约束情况,进而拓宽传统对数型障碍李雅普诺夫函数的适用范围.此外,通过预先设置时变边界函数的相关参数,使得系统输出在初始阶段具有较小的超调量和较快的跟踪速度,并能够满足系统的稳态性能要求.在此基础上,结合反演法设计反馈控制律,保证系统的输出约束性能和轨迹跟踪精度.最后,基于李雅普诺夫稳定性定理证明所有闭环信号能够达到一致最终有界,并给出数值仿真对比验证所提出方法的有效性. In this paper,an adaptive prescribed performance control scheme is proposed based on time-varying barrier Lyapunov function for flexible-joint manipulator systems with output constraints and model uncertainties.A time-varying tangent barrier Lyapunov function is first presented by constructing a time-varying constrained boundary which attenuates exponentially,and it extends the application scope of the conventional logarithmic barrier Lyapunov functions.In addition,by presetting the parameters of the time-varying boundary function,the system output has the smaller overshoot and faster tracking speed in the initial stage,and the satisfactory steady-state performance can be guaranteed simultaneously.Then,the feedback control law is designed by employing the backstepping technique to ensure the output constraints and the trajectory tracking accuracy.All the closed-loop signals are proved to be uniformly ultimately bounded through using the Lyapunov stability theorem,and numerical simulations are given to show the effectiveness of the proposed scheme.
作者 陈强 丁科新 南余荣 CHEN Qiang;DING Ke-xin;NAN Yu-rong(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第2期387-394,共8页 Control and Decision
基金 国家自然科学基金项目(61973274) 浙江省自然科学基金项目(LY17F030018,LY20E070007).
关键词 自适应控制 神经网络 预设性能 柔性关节机械臂 adaptive control neural networks prescribed performance flexible-joint manipulators
  • 相关文献

参考文献6

二级参考文献42

  • 1石宗英,钟宜生,徐文立.参数不确定机器人分散鲁棒跟踪控制[J].控制与决策,2004,19(7):759-763. 被引量:7
  • 2聂娟,邵诚.基于神经网络的机器人轨迹鲁棒跟踪控制[J].自动化技术与应用,2002(6):14-18. 被引量:3
  • 3闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55. 被引量:105
  • 4Wang L. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Trans on Fuzzy Systems, 1993, 1 (2) :146-155.
  • 5Li Z, Chen W. Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators [J]. Engineering Applications of Artificial Intelligence, 2007, 21(7) :985-1000.
  • 6Lam H K, Leung F H, Tam P K. Stable and robust fuzzy control for uncertain nonlinear systems[J]. IEEE Trans on Systems, Man and Cybernetics, 2000, 30 (6):825-840.
  • 7Spooner J T, Maggiore M. Stable adaptive control and estimation for nonlinear systems neural and fuzzy approximatior techniques [M]. New York: Wiley Interscience, 2002.
  • 8Hong F, Ge S S, Lee T H. Robust adaptive neurofuzzy control of uncertain nonholonomic mobile robots[C]. Proc of the 24th Chinese Control Conf. 2005, 1 : 988-994.
  • 9Das T, Kar I N. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots [ J ]. IEEE Trans on Control Systems Technilogy, 2006, 14(3): 501-510.
  • 10Mazur A, Arent K. Trajectory tracking control for nonholonomic mobile manipulators [J]. Robot Motion and Control, 2006, 335: 55-71.

共引文献74

同被引文献187

引证文献30

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部