期刊文献+

基于YOLOv3检测和特征点匹配的多目标跟踪算法 被引量:19

Multi-target Tracking Algorithm Based on YOLOv3 Detection and Feature Point Matching
下载PDF
导出
摘要 针对传统多目标跟踪算法中行人检测速度慢、易受光照变化、行人快速移动及部分遮挡因素的影响造成行人目标跟踪性能差等问题,提出一种根据经典的Tracking-by-Detection模式,采用深度学习YOLOv3算法检测行人目标,然后利用FAST角点检测算法与BRISK特征点描述算法对相邻帧间的行人目标进行特征点匹配,实现多目标行人跟踪的算法。实验结果表明行人目标在背光、快速移动、部分遮挡等复杂环境下均获得了良好的连续跟踪效果,平均精度达到87.7%,速度达到35帧/s。 For multiple target tracking algorithm in the traditional pedestrian detection speed is slow,vulnerable to illumination change,the fast moving of pedestrians and the influence of partial occlusion cause the poor performance of pedestrian target tracking. According to the classic Tracking-by-Detection mode,a new pedestrian tracking algorithm is proposed,which uses deep learning YOLOv3 algorithm to detect pedestrian targets,and then uses fast corner detection algorithm and brisk feature point description algorithm to match the feature points of pedestrian targets between adjacent frames to achieve multi-target pedestrian tracking. The experimental results show that the pedestrian target achieves good continuous tracking effect under various complex environments of backlight,fast movement and partial occlusion,with an average accuracy of 87. 7% and a speed of 35 frames per second.
作者 谭芳 穆平安 马忠雪 TAN Fang;MU Ping-an;MA Zhong-xue(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《计量学报》 CSCD 北大核心 2021年第2期157-162,共6页 Acta Metrologica Sinica
关键词 计量学 多目标跟踪 深度学习 YOLOv3算法 特征点匹配 图像处理 metrology multi-target tracking deep learning YOLOv3 algorithm feature point matching image processing
  • 相关文献

参考文献5

二级参考文献23

  • 1黄桂平,李广云,王保丰,叶声华.单目视觉测量技术研究[J].计量学报,2004,25(4):314-317. 被引量:92
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3Eousetouane Fouad, Dib Lynda, Snoussi Hichem. Improved mean s]f'Mt integrating texture and color features for robust real tirle object tracking [J]. Visual fkmputer, 2013, 29 (3): 155 170.
  • 4Yinghong M, Zhi Hong M, Wenyan J, et al. Magnetic hand tracking for human-computer interface [J ]. IEEE Trans Magn, 2011..47 (5): 970-973.
  • 5Souza DFL, Machado LS, Moraes RM. Integration of tracking systems for the development of virtual reality applications [J]. IEEE Lat Am Trans, 2010, 8 (6).. 714-721.
  • 6Ning J, Zhang L, Zhang D, et al. Robust mean-shift tracking with corrected background-weighted histogram [J]. Computer Vision, IN'I', 2012, 6 (1): 62-69.
  • 7Wang Lingfeng, Pan Chunhong, Xiang Shirning. Mean-shifttracking algorithm with weight fusion strategy [C] //Interna- tional Conference on Image Processing, 2011:473-476.
  • 8Vilaplana V, Varas D. Face tracking using a region based mean-shift algorithm with adaptive object and background mo- dels [J]. International Workshop on Image Analysis for Multi- media Interactive Services, 2009: 9-12.
  • 9吴凤和.基于计算机视觉测量技术的图像轮廓提取方法研究[J].计量学报,2007,28(1):18-22. 被引量:87
  • 10陈爱斌,蔡自兴,董德毅.一种基于目标和背景加权的目标跟踪方法[J].控制与决策,2010,25(8):1246-1250. 被引量:10

共引文献121

同被引文献116

引证文献19

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部