期刊文献+

基于自适应混沌遗传算法的影响力最大化研究 被引量:3

Influence maximization based on self-adapting chaos genetic algorithm
下载PDF
导出
摘要 目前,利用智能算法代替贪婪策略求解种子集影响力的方法极大地缩短了运行时间,但一些智能算法因参数设置困难而导致搜索能力不稳定,达不到预期效果,且多数实验仅在小型网络中进行,没有运用到中大型网络.针对此不足,提出一种自适应混沌遗传算法.首先,将一阶容斥激活集引入遗传算法作为适应度函数,目的是在迭代过程中评估种子集的预期影响;然后,利用Logistic混沌序列优化交叉和变异过程中的基因选择;最后,在自适应变异机制下搜索出最优种子集.在4个真实网络上的实验表明,该算法运行效率较高,找到的种子集影响范围较广. The current method of using intelligent algorithms,which instead of greedy strategy to solve the influence of seed sets,has greatly shortened the running time.However,some intelligent algorithms have unstable search capabilities and fail to achieve the expected results due to difficulty in parameter set,and most of the experiments are only carried out on small networks,not medium and large networks.Aiming at this problem,an adaptive chaotic genetic algorithm is proposed.Firstly,the first-order tolerance activation set is introduced into the genetic algorithm as a fitness function,which the purpose is to evaluate the expected influence of the seed set in the iterative process.Then,the Logistic chaotic sequence is used to optimize gene selection of crossover and mutation.Finally,the self-adaptive mutation mechanism search for the optimal seed set.The experiments on four real networks show that the algorithm runs efficiently and the seed set has a wider range of influence.
作者 张萌 李维华 ZHANG Meng;LI Wei-hua(School of Information Science&Engineering,Yunnan University,Kunming 650500,Yunnan,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期237-244,共8页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61762090) 云南省教育厅科学研究基金(2019J0006).
关键词 自适应混沌遗传算法 影响力最大化 容斥激活集 self-adapting chaos genetic algorithm influence maximization inclusion-exclusion activation set
  • 相关文献

参考文献3

二级参考文献30

  • 1张楠,李志蜀,张建华,李奇.基于混沌理论的免疫遗传算法[J].计算机应用,2006,26(5):1111-1112. 被引量:7
  • 2Domingos P, Richardson M. Mining the network value of customers//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001:57-66.
  • 3Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 4Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003= 137-146.
  • 5Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007 420-429.
  • 6Goyal A, Lu Wei, Lakshmanan L V S. CELFT+ : Optimizing the greedy algorithm for influence maximization in social networks//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad, India, 2011 47-48.
  • 7Leskovec J. Dynamics of Large Networks. Pittsburgh, USA: Addison Wesley Publishing Company, 2008.
  • 8Kimura M, Saito K, Nakano R. Extracting influential nodes for information diffusion on a social network//Proceedings of the 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference. Vancouver, Canada, 2007 1371-1376.
  • 9Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:199-208.
  • 10Wang Yu, Cong Gao, Song Guojie, Xie Kunqing. Community- based greedy algorithm for mining top-k influential nodes in mobile social networks//Proeeedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010.. 1039 1048.

共引文献24

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部