摘要
为研究Lumogen(C_(22)H_(16)N_(2)O_(6))薄膜在真空紫外波段的光致发光特性及辐照损伤,采用热阻蒸发法,以氟化镁为基底制备Lumogen薄膜。使用真空紫外荧光光谱仪、原子力显微镜(AFM)、扫描电子显微镜(SEM)、紫外−可见分光光度计等仪器分别对薄膜的光致发光特性、荧光强度衰减变化、表面形貌、透过率等进行测试与表征。实验结果表明,真空紫外波段的最佳激发波长为160 nm;发射峰宽为500~620 nm,峰值位置是在528 nm处;在160 nm激发波长持续辐照20 h后,发射峰位置的荧光强度由快及慢地从8.76衰减为0.83,整体下降了90.5%;薄膜表面的均方根粗糙度从10.96 nm增加到14.96 nm;160 nm真空紫外光的高光子能量使Lumogen分子中的荧光助色团-OH断裂,薄膜表面受损,造成不可逆的破坏;被真空紫外光持续辐照后的Lumogen薄膜在250~450 nm波段内的透过率下降了约50%。研究结果表明,Lumogen薄膜在持续高能真空紫外光辐照下,薄膜表面会造成损伤,光学性能会下降,为其在紫外探测器件及航空航天领域的应用研究提供一定参考。
In order to study the photoluminescence characteristics and irradiation damage of Lumogen(C_(22)H_(16)N_(2)O_(6))film in the vacuum ultraviolet band,a thermal resistance evaporation method was used to prepare a Lumogen film with magnesium fluoride as the substrate.Vacuum ultraviolet fluorescence spectrometer,atomic force microscope(AFM),scanning electron microscope(SEM),ultraviolet-visible spectrophotometer and other instruments were used to measure the photoluminescence characteristics,attenuation of fluorescence intensity,surface morphology,transmittance,etc.The experimental results show that the excitation wavelength in the vacuum ultraviolet band is 160 nm;the emission peak width is 500~620 nm;the peak position is at 528 nm.After continuous irradiation at the excitation wavelength of 160 nm for 20 hours,the fluorescence intensity at the emission peak position decreases from 8.76 to 0.83,and the overall decrease is 90.5%.The values of the root mean square(RMS)smoothness increases from 10.96 nm to 14.96 nm.The high photon energy of 160 nm vacuum ultraviolet light excites the fluorescence in Lumogen molecules The chromophore-OH breaks and the film surface is damaged,causing irreversible damage.The transmittance of the Lumogen film irradiated by vacuum ultraviolet light in the 250~450 nm band decreased by about 50%.The research results show that under continuous high-energy vacuum ultraviolet light irradiation,the surface of the film will be damaged and the optical performance will deteriorate.This provides a reference for its application in the field of ultraviolet detection devices and aerospace.
作者
顾页妮
钱晓晨
吕燕磊
陶春先
GU Yeni;QIAN Xiaochen;LYU Yanlei;TAO Chunxian(Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai 200093,China;Engineering Research center of Optical Instruments and Systems,Ministry of Education,University of Shanghai for Science and Technology Shanghai 200093,China)
出处
《光学仪器》
2021年第1期82-87,共6页
Optical Instruments