期刊文献+

基于改进BBO优化的客机空速控制仿真方法 被引量:1

Civil aircraft airspeed control simulation method based on improved BBO optimization
下载PDF
导出
摘要 在仿真指定机型空速控制律时,因缺乏其飞行数据包,导致控制参数难以确定的问题,为此提出一种利用快速存取记录器(QAR)数据训练的变论域模糊PID控制方法。在传统模糊PID控制基础上,保持模糊论域不变,引入伸缩因子调节量化因子和比例因子,利用系统输出值与QAR数据对应值之间的偏差构造目标函数,通过莱维飞行-生物地理学优化(LBBO)算法对伸缩因子进行优化。实验结果表明,该方法能够自适应调整控制参数,对指定机型空速控制律具有良好的仿真效果。 Aiming at the problem that it is difficult to determine the control parameters due to the lack of software service packets when simulating the airspeed control law of a designated aircraft model,a variable universe fuzzy PID control method using quick access recorder(QAR)data training was proposed.Based on the traditional fuzzy PID controller,the fuzzy universe was kept unchanged,and the flexible factor was introduced to adjust the quantifying factor and the scale factor.The flexible factor was optimized through the Levy flight-biogeography based optimization(LBBO)algorithm,and the objective function in the LBBO was constructed using the deviation between the system output value and the corresponding value of the QAR data.Experimental results show that the proposed method can adjust the control parameters adaptively with good simulation effects on the airspeed control law of the proposed model.
作者 耿宏 操正 郝磊 GENG Hong;CAO Zheng;HAO Lei(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China;Basic Experimental Center,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机工程与设计》 北大核心 2021年第3期875-881,共7页 Computer Engineering and Design
基金 中央高校基本科研业务费基金项目(3122017046) 中美绿色航线合作基金项目(GH201661279)。
关键词 机型 空速控制仿真 快速存取记录器数据 模糊-比例积分微分控制 伸缩因子 莱维飞行-生物地理学优化 aircraft model simulation of airspeed control quick access recorder(QAR)data fuzzy-PID control flexible factor Levy flight-biogeography based optimization(LBBO)
  • 相关文献

参考文献5

二级参考文献31

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:46
  • 2岳龙旺,许天春,贠今天.“妙手”系统机械结构设计与优化[J].机器人,2006,28(2):154-159. 被引量:8
  • 3《飞机设计手册》总编委会.飞机设计手册第12册:飞行控制系统和液压系统设计[M].北京:航空工业出版社,2003:131-153.
  • 4Harris T J,Boudreau F,Mac Gregor J F.Performance assessment of multivariable feedback controller[J].Automatica,1996,32(11):1505-1518.
  • 5Huang B,Shah S L,Miller R.Feed/forward plus feedback controller performance assessment of MIMO system[J].IEEE Transactions on Control Systems Technology,2000,8(3):580-587.
  • 6Shah S L,Patwardhan R,Huang B.Multivariate controller performance analysis:method,application and challenge[J].AIChE Symposium Series,2002,98(326):190- 207.
  • 7Wang X,Huang B,Chen T.Multirate minimum variance control design and control performance assessment:A data-driven subspace approach[J].IEEE Transactions on Control Systems Technology,2007,15(1):65-74.
  • 8Huang B,Kadali R.Subspace approach to MIMO feedback control performance assessment[M].Heidelberg:Springer Berlin,2008.
  • 9Yu J,Qin S J.Statistical MIMO controller performance monitoring.Part I:Data-driven covariance benchmark[J].Journal of Process Control,2008,18(3-4):277-296.
  • 10贾学翠.基于协方差分析的多变量控制系统性能诊断[D].保定:华北电力大学,2010.

共引文献35

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部