期刊文献+

结合深度语义特征的人岗精准匹配算法 被引量:4

Research on Accurate Matching Algorithms for Personnel-post Combining Depth Semantic Features
下载PDF
导出
摘要 受中美贸易摩擦不断升级、国内经济结构调整和金融市场波动等环境压力影响,目前全国就业形势整体较为严峻。互联网中海量岗位信息的存在,为求职者和招聘单位带来了便捷,也为精准人岗匹配提出了挑战。基于内容的推荐算法较适用于人岗匹配,但是目前大多数方法使用的特征较少,特别是对提供的长文本信息利用不够。本文提出一种结合深度语义特征的人岗精准匹配算法,在构建较为完善的人岗特征体系基础上,利用自然语言处理技术,采用Doc2vec方法充分挖掘长文本中包含的语义信息,实现求职者与岗位之间信息的精准匹配。该方法既能克服数据稀疏和冷启动问题,同时能充分利用求职者和岗位提供的信息,有利于实现更加准确、个性化的就业推荐服务。 Influenced by the escalating trade friction between China and the United States,the adjustment of domestic economic structure and the fluctuation of financial market,the employment situation in China is more severe as a whole. The existence of a large amount of job information on the Internet has brought convenience to job seekers and recruiters,as well as challenges to accurate job matching. Content-based recommendation algorithm is more suitable for job-to-post matching,but at present most methods use fewer features,especially the use of the long text information provided is not enough.. This paper proposes an accurate human-post matching algorithm combined with deep semantic features. On the basis of building a relatively complete human-post feature system,natural language processing technology and Doc2 vec method are used to fully mine the semantic information contained in long texts,so as to realize the accurate matching of information between job seekers and positions. This method can not only overcome the problem of data sparseness and cold start,but also make full use of the information provided by job seekers and positions,which is conducive to achieving more accurate and personalized employment recommendation services.
作者 张毅 高元荣 黄宗财 吴升 王毅青 黄幼姑 ZHANG Yi;GAO Yuanrong;HUANG Zongcai;WU Sheng;WANG Yiqing;HUANG Yougu(Fujian Star Big Data Application Service Co.,Ltd.,Fuzhou 350003,China;Digital China Research Institute,Fuzhou University,Fuzhou 350002,China)
出处 《贵州大学学报(自然科学版)》 2021年第1期65-70,共6页 Journal of Guizhou University:Natural Sciences
基金 星空大数据应用技术联合实验室开放基金资助项目(NBD-2018-165)。
关键词 人岗特征体系 深度语义特征 Word2vec Doc2vec 人岗精准匹配 person-post feature system deep semantic feature Word2vec Doc2vec person-post precise matching
  • 相关文献

参考文献7

二级参考文献61

  • 1王欢,黄健元,王薇.人口结构转变、产业及就业结构调整背景下劳动力供求关系分析[J].人口与经济,2014(2):96-10. 被引量:48
  • 2王利.Web挖掘在个性化学习网站中的应用[J].福建电脑,2006(1):93-94. 被引量:1
  • 3王金营,蔺丽莉.中国人口劳动参与率与未来劳动力供给分析[J].人口学刊,2006,28(4):19-24. 被引量:91
  • 4周晓兰,王随平.WEB文本挖掘中用户兴趣模型的建立和更新[J].湘潭师范学院学报(自然科学版),2006,28(3):33-36. 被引量:8
  • 5[美]保罗·s·麦耶斯.知识管理与组织设计[M].珠海出版社,1998.43.
  • 6杨桂青 杨晨光.高校学术权力和行政权力如何平衡[N].中国教育报,2004-08-09(2).
  • 7田长霖.关于办好一所大学的几点意见[A]..海外学者论中国[M].北京:华夏出版社,1994.206.
  • 8[美]伯顿·R·克拉克.高等教育系统-学术组织的跨国研究[M].杭州:杭州大学出版,1994..
  • 9Chen X J,Xu X F,HuangJZ,etal.TW-K-Means: Automated Two-Level Variable Weighting Clustering Algorithmfor Multiview Data[J].IEEE Transactions on KnowledgeandDataEngineering,2013,25(4):932- 944. [2] 张嘉赢,刘井莲,赵卫绩.一种基于半布尔矩阵的混合维关联规则算法[J].沈阳大学学报,2008,20(2):19- 21. [3] 原忠虎,李佳,张博.一种加权的系统聚类方法及应用[J]. 沈阳大学学报:自然科学版,2014,26(3):201- 207. [4] PengXS,ZhouCK,HepburnDM.etal.ApplicationofKMeansMethodtoPatternRecognitioninOn- LineCablePartial DischargeMonitoring[J].IEEE TransactionsonDielectrics andElectricalInsulation,2013,20(3):754 -761. [5] ShiY,TrancheventLC,LiuX H,etal.OptimizedData FusionforKernelK-MeansClustering[M]∥Kernel-Based DataFusionforMachineLearning.London:SpringerBerlin Heidelberg,2011:89- 107. [6] 丁静,杨善林,罗贺,等.云计算环境下的数据挖掘服务模式 [J].计算机科学.2012,39(6A):217- 237. [7] Boutsidis C, Magdon-Ismail M. Deterministic Feature SelectionforK-MeansClustering[J].IEEETransactionson InformationTheory,2013,59(9):6099 -6110. [8] XuTT,DongXJ.MiningFrequentPatternswithMultiple Minimum Supports UsingBasic Apriori[C]∥2013 Ninth InternationalConferenceon NaturalComputation (ICNC), Shenyang,2013:957- 961. [9] Peng Y,Zhou T.Researchonthe AprioriAlgorithmin ExtractingtheKeyFactor[C]∥2012IEEE2ndInternational Conferenceon Cloud Computing and Intelligent Systems (CCIS).Hangzhou,2012:90- 93. [10] PaladinoR,camposJM,PereiraW.StudyoftheGraduates fromComputerScienceDepartmentoftheCatholicUniversity AndresBellinCaracas[C]∥ComputingConference(CLEI), 2014XLLatinAmerican2014,Montevideo:1- 8.
  • 10PengXS,ZhouCK,HepburnDM.etal.ApplicationofKMeansMethodtoPatternRecognitioninOn- LineCablePartial DischargeMonitoring[J].IEEE TransactionsonDielectrics andElectricalInsulation,2013,20(3):754 -761.

共引文献40

同被引文献22

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部