摘要
Developing excellent pseudocapacitive electrodes with long cycle,high areal capacity and large rate has been challenged.3 D printing is an additive manufacture technique that has been explored to construct microelectrodes of arbitrary geometries for high-energy–density supercapacitors.In comparison with conventional electrodes with uncontrollable geometries and architectures,3 D-printed electrodes possess unique advantage in geometrical shape,mechanical properties,surface area,especially in ion transport and charge transfer.Thus,a desirable 3 D electrode with ordered porous structures can be elaborately designed by 3 D printing technology for improving electrochemical capacitance and rate capability.In this work,a designed,monolithic and ordered multi-porous 3 D Cu conductive skeleton was manufactured through 3 D direct ink writing technique and coated with Cu O nanosheet arrays by an in situ electro-oxidation treatment.Benefiting from the highly ordered multiporous nature,the 3 D-structured skeleton can eff ectively enlarge the surface area,enhance the penetration of electrolyte and facilitate fast electron and ion transport.As a result,the 3 D-printed Cu deposited with electro-oxidation-generated CuO(3 DP Cu@Cu O)electrodes demonstrates an ultrahigh areal capacitance of 1.690 F cm^(-2)(38.79 F cm^(-3))at a large current density of 30 m A cm^(-2)(688.59 m A cm^(-3)),excellent lifespan of 88.20%capacitance retention after 10,000 cycles at 30 m A cm^(-2) and superior rate capability(94.31%retention,2-30 m A cm^(-2)).This design concept of 3 D printing multi-porous current collector with hierarchical active materials provides a novel way to build high-performance 3 D microelectrodes.
基金
financially supported by the National Natural Science Foundation of China(Nos.51771236,51901249 and U1904216)
the Science Fund for Distinguished Young Scholars of Hunan Province(No.2018JJ1038)。