期刊文献+

基于人工智能的滤波和插值图像重建算法在腹部磁共振图像降噪中的价值 被引量:12

The Application Value of Artificial Intelligence-based Filtering and Interpolated Image Reconstruction Algorithm in Abdominal Magnetic Resonance Image Denoising
原文传递
导出
摘要 目的比较腹部磁共振序列中常规滤波技术和基于人工智能的滤波和插值(artificial intelligence based filtering and interpolation,AIFI)的重建技术的降噪性能,并探讨AIFI在图像降噪时的最优参数。方法回顾性纳入我院60例进行上腹部磁共振检查的患者,将其T1加权成像(T1-weighted image,T1WI)、T2加权成像(T2-weighted image,T2WI)和双回波序列的原始图像分别进行常规滤波和不同强度的AIFI技术重建,比较重建图像的客观图像质量指标——图像峰值信噪比(peak signal noise ratio,pSNR)和图像锐利度。两名医生对重建图像噪声、对比度、清晰度、总体图像质量进行评分,比较其评分结果并计算观察者间一致性。结果相较于原始图像,三序列(T1WI、T2WI和双回波序列)图像经降噪技术重建后图像的pSNR、图像锐利度均有不同程度的提高(P均<0.05),且在T1WI中使用常规滤波和AIFI组合重建时,T2WI和echo1序列中AIFI level≥3及组合重建时,echo2序列中AIFI level≥4及组合重建时的图像客观质量评分高于常规滤波(P均<0.05)。对三序列主观评分中常规滤波重建、AIFI重建(除AIFI level=1)、组合重建图像各序列中的图像噪声、对比度、清晰度、整体图像质量的评分均高于原始图像(P均<0.05),AIFI level=5时,图像对比度得分均有所降低(P<0.05)。两医生评分具有良好的一致性(r均>0.75,P<0.05)。经多维度比较,腹部MRI使用AIFI技术进行降噪时的最优参数T1WI为常规滤波+AIFI level=3;T2WI和双回波序列中为AIFI level=4。结论AIFI技术在中高level的降噪表现优于常规滤波,是一种具有良好应用前景的降噪技术,其在腹部MRI的最优参数T1WI为常规滤波+AIFI level=3;T2WI和双回波序列中为AIFI level=4。 Objective To compare the noise reduction performance of conventional filtering and artificial intelligence-based filtering and interpolation(AIFI)and to explore for optimal parameters of applying AIFI in the noise reduction of abdominal magnetic resonance imaging(MRI).Methods Sixty patients who underwent upper abdominal MRI examination in our hospital were retrospectively included.The raw data of T1-weighted image(T1 WI),T2-weighted image(T2 WI),and dualecho sequences were reconstructed with two image denoising techniques,conventional filtering and AIFI of different levels of intensity.The difference in objective image quality indicators,peak signal-to-noise ratio(pSNR)and image sharpness,of the different denoising techniques was compared.Two radiologists evaluated the image noise,contrast,sharpness,and overall image quality.Their scores were compared and the interobserver agreement was calculated.Results Compared with the original images,improvement of varying degrees were shown in the pSNR and the sharpness of the images of the three sequences,T1 W1,T2 W2,and dual echo sequence,after denoising filtering and AIFI were used(all P<0.05).In addition,compared with conventional filtering,the objective quality scores of the reconstructed images were improved when conventional filtering was combined with AIFI reconstruction methods in T1 WI sequence,AIFI level≥3 was used in T2 WI and echo1 sequence,and AIFI level≥4 was used in echo2 sequence(all P<0.05).The subjective scores given by the two radiologists for the image noise,contrast,sharpness,and overall image quality in each sequence of conventional filtering reconstruction,AIFI reconstruction(except for AIFI level=1),and twomethod combination reconstruction were higher than those of the original images(all P<0.05).However,the image contrast scores were reduced for AIFI level=5.There was good interobserver agreement between the two radiologists(all r>0.75,P<0.05).After multidimensional comparison,the optimal parameters of using AIFI technique for noise reduction in abdominal MRI were conventional filtering+AIFI level=3 in the T1 WI sequence and AIFI level=4 in the T2 WI and dualecho sequences.Conclusion AIFI is superior to filtering in imaging denoising at medium and high levels.It is a promising noise reduction technique.The optimal parameters of using AIFI for abdominal MRI are Filtering+AIFI level=3 in the T1 WI sequence and AIFI level=4 in T2 WI and dualecho sequences.
作者 徐旭 彭婉琳 张金戈 刘科伶 胡斯娴 曾令明 夏春潮 李真林 XU Xu;PENG Wan-lin;ZHANG Jin-ge;LIU Ke-ling;HU Si-xian;ZENG Ling-ming;XIA Chun-chao;LI Zhen-lin(Department of Radiology,West China Hospital,Sichuan University,Chengdu 610041,China)
出处 《四川大学学报(医学版)》 CAS CSCD 北大核心 2021年第2期293-299,共7页 Journal of Sichuan University(Medical Sciences)
基金 四川省科技计划项目(No.2019YFS0522) 四川大学华西医院学科卓越发展1·3·5工程项目(No.ZYGD18019)资助。
关键词 腹部磁共振成像 图像降噪 滤波 人工智能 Abdominal magnetic resonance imaging Image denoising Filtering Artificial intelligence
  • 相关文献

参考文献4

二级参考文献119

  • 1Montag E D,,Fairchild M D.Fundamentals of Human Vision and Vision Modeling in Digital Video Image Quality and Perceptual Cod-ing[]..2006
  • 2VQEG members.RRNR-TV Group test plan. http://www.its.bldrdoc.gov/vqeg/meetings/10-04_meeting . 2004
  • 3Wang Z,Cormack L,et al.Laboratory for Image&Video Engineering. http://live.ece.utexas.edu/research/quality . 2002
  • 4Zhou Wang,Bovik A C.A Universal Image Quality Index[].Signal Processing Letters IEEE.2002
  • 5Deepak S Turaga,,Yingwei Chen,Jorge Caviedes.No reference PSNR estimation for compressed pictures[].Signal Processing.2004
  • 6Ong E,Lin W S,Lu Z K.No-reference JPEG-2000 image quality metric[].Proceedings of the InternationalConference on Multimedia and Expo.2003
  • 7Guangtao Zhai,Wenjun Zhang,Xiaokang Yang,etc.No-reference noticeable blockiness estimation in images[].Signal Processing.2008
  • 8Xin Li.Blind Image Quality Assessment[].International Conference on Image Processing.2002
  • 9Tomas Brandao,Maria Paula Queluza.No-reference image quality assessment based on DCT domain statistics[].Signal Processing.2008
  • 10H.R.Sheikh,,A.C.Bovik,,L.Cormack.No-Reference Quality Assessment Using Natural Scene Statistics:JPEG2000[].IEEE Transac-tions on Image Processing.2005

共引文献23

同被引文献101

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部